

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

DESENVOLVIMENTO DE UM SISTEMA WEB PARA GESTÃO
DE PESSOAS

DEVELOPMENT OF A WEB SYSTEM FOR PEOPLE MANAGEMENT

DESARROLLO DE UN SISTEMA WEB PARA LA GESTIÓN DE PERSONAS

Submissão em: 18/08/2025 Aceito em: 25/08/2025

RESUMO
Este trabalho apresenta o desenvolvimento de um sistema web para automatizar a
separação e distribuição de holerites. A solução utiliza back-end em NodeJS (Express),
banco de dados PostgreSQL e serviço externo em Python para processamento e
criptografia de arquivos PDF. Cada funcionário acessa seus documentos via
autenticação com permissões específicas. Testes ponta a ponta (E2E) validaram os
principais fluxos como publicação, fracionamento e acesso seguro. Apesar da
ausência de testes unitários, a arquitetura atende ao propósito e fornece base para
futuras melhorias.
Palavras-chave: Automação, Holerites, Testes

ABSTRACT
This work presents the development of a web-based system to automate the separation
and distribution of payslips. The solution uses a NodeJS (Express) backend, a
PostgreSQL database, and an external Python service for processing and encrypting
PDF files. Each employee accesses their documents through authentication with
specific permission. End-to-end (E2E) tests validated key flows such as publication,
file splitting, and secure access. Despite the absence of unit tests, architecture fulfills
its purpose and provides a foundation for future improvements.
Keywords: Automation, Payslips, Testing

RESUMEN
Este trabajo presenta el desarrollo de un sistema web para automatizar la separación y
la distribución de recibos de nómina. La solución utiliza un back-end en Node.js
(Express), una base de datos PostgreSQL y un servicio externo en Python para el
procesamiento y el cifrado de archivos PDF. Cada empleado accede a sus documentos
mediante autenticación con permisos específicos. Las pruebas de extremo a extremo
(E2E) validaron los principales flujos, como la publicación, el fraccionamiento y el
acceso seguro. Apesar de la ausencia de pruebas unitarias, la arquitectura cumple su
propósito y ofrece una base para mejoras futuras.
Palabras clave: Automatización, Recibos de nómina, Pruebas

 Lucas Nunes Batista
 https://orcid.org/0009-0006-7759-5403

 UNEMAT – Universidade do Estado de Mato Grosso
 e-mail: lucasnunesb6@gmail.com

 Ivan Luiz Pedroso Pires
 https://orcid.org/ 0000-0002-1380-082X

UNEMAT – Universidade do Estado de Mato Grosso
e-mail: ivanpires@unemat.br

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

1 INTRODUÇÃO

A gestão de pessoas é uma área do conhecimento voltada para o trabalho de

gerir os ativos humanos de uma organização de maneira inteligente e coerente a partir
da perspectiva de que os funcionários são parceiros de tomada de decisão (Oliveira e
Oliveira, 2018, p. 11).

Um dos contextos no qual esse tipo de gestão acontece é o Departamento
Pessoal das empresas. Este departamento é responsável por uma série de atividades,
dentre elas, a produção, distribuição e documentação de arquivos como folhas de
pagamento, informe de rendimentos, contratos de trabalho e exames laborais, por
exemplo.

Nesse contexto, uma situação corriqueira em empresas é o desperdício de
tempo e energia com a distribuição manual dos holerites aos funcionários.

Sem apoio de um software, é comum os analistas de departamento pessoal
necessitarem imprimir várias páginas de folhas de pagamento, separar manualmente
cada página em via do funcionário e via da empresa, e distribuir os documentos de
setor em setor.

Este artigo apresenta um sistema de distribuição das folhas de pagamento para
empregados e gestores da organização. Dessa forma, esse trabalho discorre sobre a
construção desse software e, embora o processo completo de gestão de pessoas
envolva uma pletora de funcionalidades, o objetivo do sistema construído será o
controle do arquivamento, a distribuição e a gestão dos holerites. Para que isso fosse
possível, o contexto do setor de Recursos Humanos de uma empresa média foi
utilizado como ponto de partida para o levantamento de requisitos, modelagem de
dados e concepção da arquitetura de software que seria utilizada.

A automação do processo de envio de folhas salariais na empresa justifica-se
na redução da possibilidade de erro humano, do desperdício de tempo e da
ineficiência presente no método manual e repetitivo. Além disso, espera-se que a
digitalização contribua para maior agilidade na comunicação interna e melhoria na
organização dos documentos.

O restante deste artigo está organizado da seguinte forma: a seção “Soluções
relacionadas” apresenta uma análise sobre as ferramentas comerciais que possuem
proposta semelhante ao sistema em questão; a seção “Tecnologias envolvidas”
apresenta os diferentes utilitários e meios usados para a construção do sistema; na
seção FolhaNet, os requisitos e arquitetura do software são apresentados; na seção
“Desenvolvimento” são mostrados os procedimentos realizados para a codificação do
front-end e do back-end; a seção “Testes” demonstra uma avaliação das principais
funcionalidades do sistema e, por fim, “Resultados obtidos” apresenta uma análise dos
testes realizados.

2 REFERENCIAL TEÓRICO

2.1 Soluções relacionadas

Dentro do mercado de sistemas voltados à gestão de recursos humanos há uma
variedade de opções, cada qual com suas características, pontos positivos e negativos.
Um exemplo de solução robusta é o EPM da Tecsmart, o qual abrange
funcionalidades como controle de ponto avançado (marcação móvel e geolocalização),
automação de processos operacionais, disponibilização de módulos destinados a saúde,

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

segurança, gestão de currículos e até mesmo análise de indicadores via ferramentas de
Business Inteligence.

Um outro exemplo é o sistema Kairos da Dimep Sistemas, que abrange
funcionalidades como dashboards com gráficos em tempo real, assinatura digital no
cartão de ponto, cadastro de horários e escalas, gerenciamento de banco de horas,
relatórios fiscais e gerenciais sob demanda e integração com sistemas de folha de
pagamento. O processamento desses dados operacionais e a criação de holerites a
partir deles geralmente é feito em sistemas contábeis, os quais exportam as folhas de
pagamento como resultado.

Entretanto, a distribuição desses documentos ainda termina no processo
manual de impressão e entrega para cada pessoa. Mesmo em sistemas que se integram
a módulos de geração de holerites (como o Kairos), não há opção de plano que apenas
envolva a coleta de marcações de ponto e automação da distribuição de documentos.
Dessa maneira, há situações em que empresas menores possuem um sistema de coleta
de ponto - para posterior envio à uma contabilidade para conseguirem as folhas de
pagamento - e desejam apenas um módulo de arquivamento e distribuição de
documentos, as quais não aproveitam todas as funcionalidades entregues mesmo nos
planos mais básicos dessas soluções do mercado. Tal problema seria resolvido com
uma solução mais pontual dentro de uma plataforma web que seja personalizável sob
demanda da organização.

Considerando esse cenário, optou-se por buscar a construção de uma solução
para esses cenários de necessidade mais específica de pequenas empresas. Desse
modo, o objetivo traçado constitui-se na criação de um software utilitário que
automatize a distribuição dos holerites e, futuramente, seja capaz de ser expandido
para abranger novas funcionalidades de gestão de RH.

2.2 Tecnologias envolvidas

Para o desenvolvimento do software, foi necessário utilizar várias ferramentas

de codificação, as quais estão listadas abaixo. Na Figura 1, é possível verificar em
qual camada da aplicação elas atuam e como interagem entre si. Os detalhes sobre a
arquitetura de camadas utilizada serão abordados na sessão Arquitetura.

• Prisma: ORM que facilita o acesso a bancos relacionais (Prisma, 2025). Foi
escolhido pela facilidade de uso, suporte ativo e familiaridade do autor;

• PostgreSQL: SGBD relacional open-source com suporte avançado a dados
(PostgreSQL, 2025). Selecionado pela robustez, comunidade ativa e experiência
prévia do autor;

• ExpressJS: Framework para NodeJS com diversas ferramentas para
gerenciamento de rotas e requisições (ExpressJS, 2025). Utilizado por sua
flexibilidade e grande adoção no mercado;

• Typescript: Superset de JavaScript com tipagem estática (Typescript, 2025).
Adotado por melhorar a previsibilidade e a detecção de erros em tempo de
desenvolvimento;

• JWT: Padrão seguido para autenticação via tokens assinados (JWT, 2025).
Escolhido por sua leveza e integração facilitada com o NodeJS;

• NextJS: Framework React focado em renderização do lado do servidor e
geração de páginas estáticas (NextJS, 2025). Utilizado pela eficiência na construção
de interfaces reativas e suporte da comunidade;

• Flask: Microframework Python para construção de aplicações web (Flask,
2025). Aplicado pela compatibilidade com o Pytesseract e por ser leve e flexível.

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

• Vitest: Framework de testes utilizado por oferecer execução rápida, feedback
ágil em tempo de desenvolvimento e suporte nativo para Typescript (Vitest, 2025);

• Docker: Docker é um conjunto de utilitários PaaS (Platform as a Service) que
usa virtualização em nível de sistema operacional para encapsular software em
contêineres portáteis e isolados. Foi aplicado devido à sua utilidade para empacotar
serviços necessários à execução dos testes ponta a ponta da aplicação.

Figura 1 – Diagrama de tecnologias utilizadas

Fonte: Autor, 2025

Dessa forma, com o uso dessas ferramentas, será possível construir um

utilitário eficaz para importar as folhas de pagamento, armazená-las de forma segura e
distribuir os holerites dos funcionários de forma automatizada.

3 PROCEDIMENTOS METODOLÓGICOS

3.1 FolhaNet

O FolhaNet é um sistema focado em atender à necessidade de gerenciar e
automatizar a distribuição de folhas salariais dentro de uma empresa, de forma a
evitar o esforço manual de funcionários do setor de Recursos Humanos para entregar
esses documentos aos funcionários. Utilizando esse software, é possível, com poucos
cliques, processar um arquivo PDF que contém todas as folhas de pagamento, separar
o holerite de cada funcionário e enviar esse arquivo para o colaborador acessar em
uma interface web. Além disso, esse sistema registra em tempo real quais holerites
foram visualizados, permitindo rastreabilidade e controle aos analistas.

Nos tópicos seguintes, serão abordados os requisitos que orientaram o
desenvolvimento do FolhaNet, a sua arquitetura e a metodologia adotada durante o
seu desenvolvimento.

3.2 Requisitos

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

Dentre as várias etapas relacionadas à engenharia de software, há o
levantamento de requisitos, o qual se concentra em dois tipos principais: requisitos
funcionais e requisitos não funcionais. Os requisitos funcionais determinam as
operações que o sistema deve ser capaz de realizar, enquanto os não funcionais
descrevem atributos de qualidade, desempenho, segurança e outras restrições
relevantes (Morais e Zanin, 2020, p. 96). O contexto de uma empresa de pequeno
porte com estrutura de RH convencional foi utilizado como base para o levantamento
dos requisitos. É possível visualizar os requisitos funcionais no Quadro 1.

Quadro 1 – Requisitos funcionais do sistema

Identificação Descrição

RF1
O usuário deve poder acessar seus holerites para visualizar seu salário, benefícios e
descontos mensais.

RF2
O supervisor deve poder acessar os holerites da equipe para revisar as informações
salariais.

RF3
O sistema deve ser capaz de receber um arquivo PDF que contenha todos os
holerites, separar as folhas de pagamento por usuário e por ID.

RF4
Deve haver uma inscrição nos holerites relativa à competência de cada um visando
a visualização destes conforme o seu período.

RF5
O sistema deve oferecer um dashboard com funções C.R.U.D. (Create, Read,
Update, Delete) tanto para usuários quanto para setores.

RF6
Deve existir um componente de pesquisa por nome, e-mail ou setor no dashboard
de usuários, facilitando a localização de registros.

RF7
Os campos de formulários dos usuários devem possuir validações padrão, como
formato de e-mail, código de folha e padrão seguro de senha.

RF8
Caso o upload do arquivo PDF único traga novos funcionários, o sistema deve
gerar um pré-cadastro desses usuários com o nome e código de folha presentes em
seus holerites.

Fonte: Autor, 2025.

Além disso, foram levantados os requisitos não funcionais, os quais estão

presentes no Quadro 2.

Quadro 2 – Requisitos não funcionais do sistema
Identificação Descrição

RNF1 O sistema deve ser executado em ambiente de produção no formato Javascript, a
partir da compilação dos arquivos Typescript.

RNF2 O software deve assegurar que a fila de envio de e-mails continue funcionando,
mesmo que algum e-mail inexistente esteja presente na lista.

RNF3 A aplicação deve utilizar um banco de dados relacional.

RNF4 O sistema deve utilizar autenticação e autorização baseada no padrão JWT (JSON
Web Token).

RNF5 A estilização do projeto deve ser realizada com uma tecnologia que permita a
compilação completa do CSS durante a build do projeto.

RNF6 O sistema deve adotar um framework de back-end que ofereça flexibilidade
arquitetural, permitindo o uso de diferentes ferramentas, pacotes e padrões de
design

RNF7 O software deve ser versionado utilizando Git, permitindo um controle mais
detalhado sobre o histórico de alterações do projeto.

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

RNF8 O sistema deve ser disponibilizado em uma intranet corporativa por meio de um
servidor web Nginx.

Fonte: Autor, 2025.

Além dos requisitos funcionais e não funcionais, foi necessário reconhecer os

requisitos de dados. Nesse sentido, a aplicação possui cinco entidades principais,
sendo elas User, Role, Department, Publish e Payslip. O modelo de dados pode ser
visualizado na Figura 2.

• A entidade User representa um funcionário e possui os seguintes
relacionamentos: Relacionamento "N para M" (muitos para muitos) com a entidade
Role, ou seja, o usuário pode ter um ou mais papéis e uma Role pode ter vários
usuários; Relacionamento "1 para 1" com a entidade Department, podendo o usuário
pertencer a apenas um departamento; Relacionamento "1 para N" com a entidade
Publish, caso tenha permissão "RH", permitindo que um usuário com essa permissão
publique vários documentos; Relacionamento "1 para N" com a entidade Payslip, ou
seja, um usuário pode ter vários holerites.

• A entidade Department representa um setor e tem um relacionamento "1" para
“N” com a entidade User, significando que um único departamento pode ter vários
funcionários.

• A entidade Role representa um papel ou permissão dentro do software e tem
um relacionamento “N para M” com a entidade User.

• A entidade Publish representa uma publicação (um documento com vários
holerites) e tem um relacionamento "1" para “N” com a entidade Payslip, o que
significa que uma publicação pode ter várias folhas salariais associadas.

• A entidade Payslip representa uma folha de pagamento no sistema e possui os
seguintes relacionamentos: Relacionamento "1" para "1" com a entidade User, ou seja,
cada folha de pagamento pertence a um único usuário; Relacionamento "1" para "1"
com a entidade Publish, ou seja, cada folha de pagamento está associada a uma única
publicação.

Figura 2 – Modelo de dados

Fonte: Autor, 2025.

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

3.3 Arquitetura

A abordagem escolhida para organizar os componentes da aplicação foi a
arquitetura em camadas. Nesse paradigma, busca-se particionar a complexidade do
sistema em componentes menores - as camadas - que reúnem uma ou várias classes.
As camadas são organizadas de forma hierárquica, de modo que uma camada somente
pode usar serviços - como métodos, objetos, classes - da camada imediatamente
inferior.

As vantagens principais dessa maneira de projetar o software envolvem a
facilidade de trocar uma camada por outra e a flexibilidade no reuso dos utilitários de
uma camada em outra mais superior (Valente, 2020). Neste trabalho, optou-se pela
construção do software com a abordagem de arquitetura em três níveis. Tais níveis
são:

• Camada de apresentação: responsável pela interação com o usuário. Trata da
exibição de informações, coleta e processamento de entradas e eventos de interface
tais como cliques, marcações, entre outros (Valente, 2020). Neste trabalho, essa
camada é representada pelos componentes React executados dentro do framework
NextJS. A biblioteca React gerencia a renderização da página e o NextJS controla o
roteamento;

• Camada de aplicação: camada responsável por implementar as regras de
negócio da aplicação (Valente, 2020). No contexto deste trabalho, esse componente
arquitetural é representado por toda lógica encapsulada no back-end voltada tanto à
manipulação de informações quanto à interação com o banco de dados;

• Banco de dados: é a camada que persiste os dados processados pelo sistema
(Valente, 2020). No software em questão, é representada pelo banco PostgreSQL;

A partir do exposto, é possível compreender qualquer fluxo de eventos dentro
da aplicação. A título de ilustração, focaremos no principal processo dentro do
aplicativo: o carregamento de um arquivo contendo vários holerites e a distribuição de
cada folha separada para o seu devido proprietário (funcionário). As etapas desse
processo estão descritas abaixo e um esquema que os ilustra pode ser visualizado na
Figura 3. Passos intermediários são indicados como subtópicos (3.1, 3.2, etc).

• 1. O analista de recursos humanos faz o upload de um arquivo PDF contendo
os holerites. Essa operação de inserir o arquivo é efetuada por meio de uma chamada
a uma rota do back-end executado no servidor;

• 2. O servidor em ExpressJS recebe o documento e o guarda como rascunho
ainda não publicado (ou seja, ele ainda não foi separado em vários documentos para
envio);

• 3. Por meio de um clique do usuário, a rota de separação de arquivos é
acionada no back-end, o qual atua separando o documento PDF de origem em vários
holerites em PDF individuais.

• 4. O serviço de separação aciona um script em Python que é executado dentro
de um servidor Flask. Esse script captura cada holerite individual, extrai o texto
utilizando uma biblioteca de OCR (Optical Character Recognition) denominada
pytesseract e envia o conteúdo textual para o servidor ExpressJS.

• 5. O servidor recebe o texto e captura o código de folha e nome do funcionário,
e, junto ao ID universal deste, associa o holerite ao colaborador e grava na base de
dados. Em casos em que não há o identificador de folha no banco, um pré-cadastro do
usuário é criado e a folha salarial é associada a ele. Os holerites gravados com seus

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

respectivos donos são publicados para visualização. Cada documento é armazenado
em formato criptografado.

• 6. Uma notificação via e-mail é enviada aos usuários.

Figura 3 – Processo executado para separar os holerites

Fonte: Autor, 2025.

A partir dessa explicação, é possível verificar a presença das três camadas em

todo o processo. A camada de apresentação renderiza os componentes e captura os
eventos (cliques) de upload e de envio realizados pelo analista. A camada de
aplicação realiza todo o processamento relativo a separar os holerites, extrair o texto
de cada um, associar a folha ao funcionário correto e acionar os serviços de gravação
no banco. O banco de dados, por sua vez, persiste as informações processadas em
cada etapa.

Um outro procedimento na aplicação que exemplifica o funcionamento da
arquitetura é o processo de um usuário visualizar seu holerite. Os passos estão
descritos abaixo e um esquema que os ilustra pode ser visualizado na Figura 4. Passos
intermediários são indicados como subtópicos.

• 1. O funcionário acessa o componente que renderiza os seus holerites e
seleciona um documento por meio de um clique em um símbolo de "olho aberto";

• 2. Uma chamada é feita a uma rota do back-end que captura o identificador do
documento que se deseja visualizar e decifra-o de forma que o arquivo criptografado
se torne visualizável;

• 3. O retorno contendo o blob binário é enviado para o usuário e renderizado
pelo componente React;

• 4. De forma paralela, assim que o usuário clica no símbolo de visualização,
uma outra rota de API é acionada. Essa rota troca a coluna “isReceived” associado ao
documento dentro da base de dados, além de atualizar o campo de “updatedAt”. Isso
permite identificar se o holerite foi visualizado e, se sim, em qual data e hora.

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

Figura 4 – Processo para o usuário visualizar o holerite

Fonte: Autor, 2025.

Novamente, a partir deste processo apresentado acima, é possível verificar o

papel de cada camada para a execução correta da funcionalidade. A camada de
apresentação renderiza o botão de visualizar e envia a chamada para a API da camada
de aplicação. Esta última, por sua vez, busca o arquivo na camada de persistência
(banco de dados), decifra o documento criptografado e envia o conteúdo para a
camada de aplicação renderizar para o usuário. Além disso, ela grava se o holerite foi
visualizado e em que data isso ocorreu a partir de outra interação com o banco.

3.4 Desenvolvimento

O processo de desenvolvimento da aplicação foi iniciado a partir dos

requisitos funcionais e não funcionais levantados durante a interação inicial com os
stakeholders. Após isso, os requisitos foram segmentados em funcionalidades que,
juntas, cumprem a exigência feita pelo(s) requisito(s) correspondente(s). A seguir, os
tópicos relativos à construção do back-end e do front-end serão abordados.

3.4.1 Back-end

O desenvolvimento do back-end foi realizado de forma gradual, sendo que as

funcionalidades basilares do sistema, tais como autenticação e operações de
manipulação das entidades básicas (User, Department e Role), foram priorizadas em
um primeiro momento. Após isso, os requisitos funcionais foram classificados
conforme o grau de importância para o problema de negócio e, assim, seguiu-se a
implementação de cada um. A organização dos diretórios do projeto foi definida de
forma que refletisse a arquitetura escolhida. Nesse sentido, o projeto está estruturado
da seguinte maneira:

• Originalpdfs, payslips e photos: pastas destinadas ao armazenamento de
arquivos binários, sendo eles os relatórios de origem dos holerites, as folhas de
pagamento em si e as imagens de perfil dos usuários, respectivamente;

• Prisma: este diretório contém o esquema de dados do projeto, além de uma
subpasta que contém todos os arquivos de migração realizadas no banco de dados;

• Config: possui o arquivo de configuração do utilitário multer, uma ferramenta
que auxilia o upload dos arquivos em PDF;

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

• Controllers: contém todas as classes encarregadas de recepcionarem as
requisições HTTP e acionar os devidos serviços para respondê-las;

• Middlewares: contém os arquivos que interceptam as requisições HTTP antes
de estas chegarem aos controllers. Utilizadas para verificar se o usuário está
autenticado e autorizado a acessar o recurso;

• Prisma: contém o arquivo de configuração que instancia o utilitário prisma
para uso interno na aplicação;

• Services: armazena as classes que lidam diretamente com a manipulação do
banco de dados por meio do uso do utilitário do prisma.

• Utils: contém arquivos úteis para integração com bibliotecas de envio de e-
mails, além de erros personalizados;

• Arquivo “routes”: arquivo que contém todas as rotas da aplicação;
• Arquivo “server”: arquivo que efetivamente instancia o servidor ExpressJS,

além de servir para configurar o tratamento global de erros, a política de Cross Origin,
a fonte das variáveis ambiente, os diretórios de arquivos binários e a fonte de rotas da
aplicação.

Todo o aplicativo foi construído a partir do conceito de que uma rota está
conectada a um controller, o qual, por sua vez, chama um serviço que faz a operação
necessária na camada de persistência para responder corretamente à requisição feita
pela camada de apresentação. Como exemplo, pode-se discorrer sobre uma rota de
listagem de setores (GET ‘/departments’). A rota, ao ser chamada, invoca o método
“handle” de um controller chamado “ReadAllDepartmentsController” o qual consiste
em uma classe que tratará a requisição realizada.

Após isso, o controller instancia o serviço “ReadAllDepartmentsService” e
invoca o método “execute” deste. Esse método acionará o utilitário Prisma para fazer
a busca na base de informações. A resposta deste método – que contém os dados dos
setores – é armazenada em uma variável que, posteriormente, é retornada dentro de
um corpo em JSON para a camada solicitante. A classe do serviço atua, em
praticamente todas as vezes, invocando o utilitário do ORM Prisma para fazer a busca
(ou qualquer que seja a operação desejada) na base de dados.

Todos as funcionalidades derivadas dos requisitos foram implementadas, uma
a uma, por meio desta abordagem. Dessa forma, foi possível separar a lógica
responsável pelas requisições das regras de processamento relacionadas com a
manipulação do banco de dados.

3.4.2 Front-end

A construção do front-end foi feita gradualmente, partindo das telas essenciais

de cadastro e login dos usuários e posteriormente avançando para as páginas
relacionadas ao problema de negócio. Tal como citado, essa camada do sistema foi
construída utilizando o framework NextJS, o qual influenciou a organização dos
arquivos.

Portanto, o projeto está organizado com a seguinte estrutura:
• Diretório ".next": contém os arquivos do framework NextJS;
• Public: contém os arquivos estáticos da aplicação, como logotipos;
• Styles: contém os estilos de CSS globais da aplicação;
• Components: possui os componentes React que são reutilizados em diferentes

telas do aplicativo;

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

• Contexts: armazena os arquivos de contexto do front-end, os quais possuem
funções com chamadas ao back-end que podem ser invocadas em qualquer
componente do projeto;

• Pages: são os componentes reativos que constroem as diferentes telas que o
usuário acessa ao utilizar o software;

• Arquivo “app”: permite injetar o CSS global e configurar os providers que
iniciam os diferentes contextos do sistema;

• Arquivo “document”: utilizado para customizar os atributos de head e body do
HTML inicial que é retornado no primeiro carregamento via renderização do lado do
servidor (SSR);

• Index: é o componente que renderiza a primeira página a ser acessada. No caso,
a página de login;

• Utils: contém utilitários de controle de renderização das telas. A partir deles, é
possível bloquear, no nível da camada de aplicação, quais telas um usuário pode
acessar a depender da sua permissão;

• Services: contém os arquivos que configuram utilitários para chamar a API do
back-end.

A lógica fundamental do front-end neste projeto se baseia em páginas que são
componentes React, cada uma com sua própria estrutura e estilo CSS. Esses
componentes encapsulam sua própria lógica, que pode envolver chamadas a funções
internas ou interações com funções presentes nos diferentes contextos do NextJS via
Context API, uma funcionalidade do React.

Dessa forma, é possível ter um programa cujas telas são reativas e fazem
diferentes chamadas a funções de acordo com os eventos disparados pelo usuário. As
Figuras 5 e 6 ilustram as páginas de dashboard de publicações cadastradas pelo
analista de recursos humanos e a tela de visualização de um holerite que é mostrada
ao usuário, respectivamente. O arquivo exposto é apenas um PDF falso produzido
com o mesmo padrão de texto extraído dos holerites que seguem o layout emitido
pelo sistema contábil.

Figura 5 – Dashboard de publicações

Fonte: Autor, 2025.

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

Figura 6 – Modal de visualização do holerite selecionado

Fonte: Autor, 2025.

3.5 Testes

Os testes foram desenvolvidos com foco em uma abordagem denominada

“ponta a ponta” (E2E), utilizando a ferramenta Vitest em conjunto com a biblioteca
Supertest para simular requisições HTTP contra a aplicação. Os testes são executados
em um ambiente separado a partir da construção de um schema de dados dinâmico a
cada execução, o que garante isolamento e confiabilidade de resultados.

O programa Flask de extração de texto foi empacotado com Docker de modo
que seja executado em paralelo e monitorado com a biblioteca wait-on, de maneira a
garantir que esteja disponível antes da execução da suíte. A suíte de testes abrange
dois focos principais: a funcionalidade crucial da aplicação (receber um arquivo,
executar a separação deste e armazenar holerites) e o acesso autenticado do usuário à
plataforma.

A partir do primeiro objetivo, construiu-se um teste automatizado que
reproduz a criação da publicação, a execução do serviço de separação e criptografia, o
armazenamento desses dados no formado desejado e a listagem das informações.
Acerca do fluxo de teste da autenticação, a suíte testa o login de usuário e o acesso
deste às suas informações de perfil.

Com isso, foi possível criar uma esteira de testes que cobre a principal função
de interesse do sistema de forma confiável e realista, validando as etapas críticas do
fluxo de publicação e acesso aos documentos. A suíte de testes pode ser visualizada
na Figura 7.

Figura 7 – Suíte representada na interface gráfica do Vitest

 Fonte: Autor, 2025.

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

4 RESULTADOS E DISCUSSÕES

A execução da suíte de testes apresentou resultados satisfatórios. Os cenários

previstos foram validados com sucesso, desde o upload e criação da publicação até a
validação do armazenamento dos arquivos em formato cifrado e acesso autenticado do
usuário. A esteira de testes demonstrou robustez ao isolar o ambiente a cada execução
por meio do uso de schemas dinâmicos do banco de dados.

A integração com o serviço externo, empacotado em container Docker e
monitorado durante os testes, mostrou-se eficaz. O uso de mocks permitiu controlar a
autenticação e validar os fluxos esperados de autorização e segurança da aplicação.

Apesar da cobertura eficiente dos fluxos principais, identificou-se que há a
limitação representada pela ausência de testes unitários que cubram módulos menores
da aplicação. A abordagem atual foca em validar o comportamento global da
aplicação, carecendo de testes específicos para funções da camada de negócio. Dessa
forma, conclui-se que a introdução de testes unitários pode contribuir para maior
granularidade na detecção de falhas e reforço da confiabilidade a longo prazo, ficando
no domínio de trabalhos futuros.

5 CONCLUSÕES

O trabalho desenvolvido atingiu o objetivo principal pelo qual foi concebido:
construir um sistema capaz de automatizar o processo de separação, criptografia e
disponibilização de holerites de forma segura e com acesso controlado. A arquitetura
projetada, com integração de um back-end em NodeJS, banco de dados PostgreSQL e
serviço externo em Flask para extração de dados se demonstrou eficiente para resolver
o problema apresentado.

A implementação de uma suíte de testes ponta a ponta contribuiu para validar
os fluxos principais do sistema de forma isolada e confiável. O uso de conteinerização
e schemas dinâmicos reforçou a robustez do ambiente de testes.

Como limitação, destaca-se a ausência de testes unitários. Apesar disso, a
solução entregue atende ao escopo proposto em quesitos técnicos e oferece uma base
estruturada para futuras extensões, como dashboards, relatórios e auditoria de acessos.

REFERÊNCIAS

DIMEP. Controle de Ponto. Disponível em:
https://www.dimep.com.br/solucoes/controle-de-ponto. Acesso em: 30 mar. 2025.

DOCKER. Docker – platform designed to help developers build, share, and run
container applications. Disponível em: https://www.docker.com/. Acesso em: 28
mai. 2025.

EXPRESSJS. Express – Fast, unopinionated, minimalist web framework for
Node.js. Disponível em: https://expressjs.com/. Acesso em: 30 mar. 2025.

FLASK. Flask Documentation. Disponível em:
https://flask.palletsprojects.com/en/stable/. Acesso em: 30 mar. 2025.

 RBEGDR - 98 – 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

v. 05, n. 02 - 2025

JWT. Introduction to JSON Web Tokens. Disponível em: https://jwt.io/introduction.
Acesso em: 30 mar. 2025.

MORAIS, Izabelly S.; ZANIN, Aline. Engenharia de software. 1. ed. Porto Alegre:
SAGAH, 2020.

NEXT.JS. Next.js Documentation. Disponível em: https://nextjs.org/docs. Acesso
em: 30 mar. 2025.

OLIVEIRA, Luana Y. M.; OLIVEIRA, Pablo R. B.; SAWITZKI, Roberta; et al.
Gestão de pessoas. 1. ed. Porto Alegre: SAGAH, 2018.

POSTGRESQL. PostgreSQL: The World’s Most Advanced Open Source
Relational Database. Disponível em: https://www.postgresql.org/ . Acesso em: 2 set.
2024.

PRISMA. Prisma. Disponível em: https://www.prisma.io/. Acesso em: 30 mar. 2025.

TECSMART. EPM – Solução completa de gestão de RH. Disponível em:
https://www.tecsmart.com.br/epm/ . Acesso em: 30 mar. 2025.

TYPESCRIPT. TypeScript: TypeScript for the New Programmer. Disponível em:
https://www.typescriptlang.org/pt/docs/handbook/typescript-from-scratch.html.
Acesso em: 30 mar. 2025.

VALENTE, M. T. Engenharia de software moderna: princípios e práticas para
Desenvolvimento de Software com Produtividade. [S.l.]: Independente, 2020.

VITEST. Vitest – next generation testing framework powered by Vite. Disponível
em: https://vitest.dev/. Acesso em: 28 mai. 2025.

