aly,

_nsccnn; Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
wNr v. 05, n. 02 - 2025

SecAo de ArTiGos

DESENVOLVIMENTO DE UM SISTEMA WEB PARA GESTAO
DE PESSOAS

DEVELOPMENT OF A WEB SYSTEM FOR PEOPLE MANAGEMENT

DESARROLLO DE UN SISTEMA WEB PARA LA GESTION DE PERSONAS

Lucas Nunes Batista
https://orcid.org/0009-0006-7759-5403

UNEMAT - Universidade do Estado de Mato Grosso
e-mail: lucasnunesb6@gmail.com

Ivan Luiz Pedroso Pires

https://orcid.org/ 0000-0002-1380-082X

UNEMAT - Universidade do Estado de Mato Grosso
e-mail: ivanpires@unemat.br

Submisséo em: 18/08/2025 Aceito em: 25/08/2025

RESUMO

Este trabalho apresenta o desenvolvimento de um sistema web para automatizar a
separacao e distribuicao de holerites. A solucao utiliza back-end em NodelS (Express),
banco de dados PostgreSQL e servico externo em Python para processamento e
criptografia de arquivos PDF. Cada funcionario acessa seus documentos via
autenticacdo com permissdes especificas. Testes ponta a ponta (E2E) validaram os
principais fluxos como publicagdo, fracionamento e acesso seguro. Apesar da
auséncia de testes unitdrios, a arquitetura atende ao proposito e fornece base para
futuras melhorias.

Palavras-chave: Automacao, Holerites, Testes

ABSTRACT

This work presents the development of a web-based system to automate the separation
and distribution of payslips. The solution uses a NodeJS (Express) backend, a
PostgreSQL database, and an external Python service for processing and encrypting
PDF files. Each employee accesses their documents through authentication with
specific permission. End-to-end (E2E) tests validated key flows such as publication,
file splitting, and secure access. Despite the absence of unit tests, architecture fulfills
its purpose and provides a foundation for future improvements.

Keywords: Automation, Payslips, Testing

RESUMEN

Este trabajo presenta el desarrollo de un sistema web para automatizar la separacion y
la distribucion de recibos de nomina. La solucion utiliza un back-end en Node.js
(Express), una base de datos PostgreSQL y un servicio externo en Python para el
procesamiento y el cifrado de archivos PDF. Cada empleado accede a sus documentos
mediante autenticacion con permisos especificos. Las pruebas de extremo a extremo
(E2E) validaron los principales flujos, como la publicacion, el fraccionamiento y el
acceso seguro. Apesar de la ausencia de pruebas unitarias, la arquitectura cumple su
proposito y ofrece una base para mejoras futuras.

Palabras clave: Automatizacion, Recibos de ndmina, Pruebas

RBEGDR-98-112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

_nsccnn; Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
wNr v. 05, n. 02 - 2025

SecAo de ArTiGos

1 INTRODUCAO

A gestdo de pessoas ¢ uma area do conhecimento voltada para o trabalho de
gerir os ativos humanos de uma organizagdo de maneira inteligente e coerente a partir
da perspectiva de que os funcionarios sao parceiros de tomada de decisdao (Oliveira e
Oliveira, 2018, p. 11).

Um dos contextos no qual esse tipo de gestdo acontece ¢ o Departamento
Pessoal das empresas. Este departamento ¢ responsavel por uma série de atividades,
dentre elas, a produgdo, distribuicdo e documentacdo de arquivos como folhas de
pagamento, informe de rendimentos, contratos de trabalho e exames laborais, por
exemplo.

Nesse contexto, uma situagcdo corriqueira em empresas ¢ o desperdicio de
tempo e energia com a distribui¢do manual dos holerites aos funcionarios.

Sem apoio de um software, ¢ comum os analistas de departamento pessoal
necessitarem imprimir varias paginas de folhas de pagamento, separar manualmente
cada péagina em via do funcionario e via da empresa, e distribuir os documentos de
setor em setor.

Este artigo apresenta um sistema de distribuicao das folhas de pagamento para
empregados e gestores da organizacdo. Dessa forma, esse trabalho discorre sobre a
construcdo desse software e, embora o processo completo de gestdo de pessoas
envolva uma pletora de funcionalidades, o objetivo do sistema construido serd o
controle do arquivamento, a distribuicdo e a gestdo dos holerites. Para que isso fosse
possivel, o contexto do setor de Recursos Humanos de uma empresa média foi
utilizado como ponto de partida para o levantamento de requisitos, modelagem de
dados e concepcao da arquitetura de software que seria utilizada.

A automacado do processo de envio de folhas salariais na empresa justifica-se
na redu¢do da possibilidade de erro humano, do desperdicio de tempo e da
ineficiéncia presente no método manual e repetitivo. Além disso, espera-se que a
digitalizagdo contribua para maior agilidade na comunicagao interna ¢ melhoria na
organiza¢ao dos documentos.

O restante deste artigo estd organizado da seguinte forma: a secdo “Solugdes
relacionadas” apresenta uma andlise sobre as ferramentas comerciais que possuem
proposta semelhante ao sistema em questdo; a secdo ‘“Tecnologias envolvidas”
apresenta os diferentes utilitdrios e meios usados para a constru¢do do sistema; na
secao FolhaNet, os requisitos e arquitetura do software sdo apresentados; na se¢ao
“Desenvolvimento” sdo mostrados os procedimentos realizados para a codifica¢do do
front-end e do back-end; a secdo “Testes” demonstra uma avaliacdo das principais
funcionalidades do sistema e, por fim, “Resultados obtidos” apresenta uma analise dos
testes realizados.

2 REFERENCIAL TEORICO
2.1 Solucoes relacionadas

Dentro do mercado de sistemas voltados a gestao de recursos humanos ha uma
variedade de opgdes, cada qual com suas caracteristicas, pontos positivos e negativos.
Um exemplo de solugdo robusta ¢ o EPM da Tecsmart, o qual abrange
funcionalidades como controle de ponto avangado (marcagdo moével e geolocalizacdo),
automagao de processos operacionais, disponibilizacao de médulos destinados a satde,

RBEGDR - 98 - 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

nsccnn); Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
wNr v. 05, n. 02 - 2025

SecAo de ArTiGos

seguranca, gestdo de curriculos e at¢ mesmo andlise de indicadores via ferramentas de
Business Inteligence.

Um outro exemplo ¢ o sistema Kairos da Dimep Sistemas, que abrange
funcionalidades como dashboards com graficos em tempo real, assinatura digital no
cartdo de ponto, cadastro de horarios e escalas, gerenciamento de banco de horas,
relatorios fiscais e gerenciais sob demanda e integracdo com sistemas de folha de
pagamento. O processamento desses dados operacionais € a criagdo de holerites a
partir deles geralmente ¢ feito em sistemas contdbeis, os quais exportam as folhas de
pagamento como resultado.

Entretanto, a distribuicdo desses documentos ainda termina no processo
manual de impressao e entrega para cada pessoa. Mesmo em sistemas que se integram
a modulos de geragdo de holerites (como o Kairos), ndo hé opg¢ao de plano que apenas
envolva a coleta de marcagdes de ponto e automacao da distribuicao de documentos.
Dessa maneira, ha situacdes em que empresas menores possuem um sistema de coleta
de ponto - para posterior envio a uma contabilidade para conseguirem as folhas de
pagamento - e desejam apenas um moédulo de arquivamento e distribuicdo de
documentos, as quais nao aproveitam todas as funcionalidades entregues mesmo nos
planos mais bésicos dessas solugdes do mercado. Tal problema seria resolvido com
uma solu¢do mais pontual dentro de uma plataforma web que seja personalizavel sob
demanda da organizagao.

Considerando esse cendrio, optou-se por buscar a constru¢ao de uma solugao
para esses cenarios de necessidade mais especifica de pequenas empresas. Desse
modo, o objetivo tragado constitui-se na criagdo de um software utilitdrio que
automatize a distribui¢do dos holerites e, futuramente, seja capaz de ser expandido
para abranger novas funcionalidades de gestao de RH.

2.2 Tecnologias envolvidas

Para o desenvolvimento do software, foi necessario utilizar varias ferramentas
de codificacdo, as quais estdo listadas abaixo. Na Figura 1, ¢ possivel verificar em
qual camada da aplicacdo elas atuam e como interagem entre si. Os detalhes sobre a
arquitetura de camadas utilizada serdo abordados na sessdo Arquitetura.

* Prisma: ORM que facilita o acesso a bancos relacionais (Prisma, 2025). Foi
escolhido pela facilidade de uso, suporte ativo e familiaridade do autor;

* PostgreSQOL: SGBD relacional open-source com suporte avancado a dados
(PostgreSQL, 2025). Selecionado pela robustez, comunidade ativa e experiéncia
prévia do autor;

* ExpressJS: Framework para NodeJ]S com diversas ferramentas para
gerenciamento de rotas e requisicoes (Express]JS, 2025). Utilizado por sua
flexibilidade e grande adog¢dao no mercado;

* Typescript: Superset de JavaScript com tipagem estatica (Typescript, 2025).
Adotado por melhorar a previsibilidade e a deteccdo de erros em tempo de
desenvolvimento;

 JWT: Padriao seguido para autentica¢do via tokens assinados (JWT, 2025).
Escolhido por sua leveza e integragdo facilitada com o NodeJS;

* NextJS: Framework React focado em renderizagdo do lado do servidor e
geragdo de paginas estaticas (NextJS, 2025). Utilizado pela eficiéncia na construgao
de interfaces reativas e suporte da comunidade;

» Flask: Microframework Python para construcdo de aplicagdes web (Flask,
2025). Aplicado pela compatibilidade com o Pytesseract e por ser leve e flexivel.

RBEGDR - 98 - 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

_nszcnn; Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
wNr v. 05, n. 02 - 2025

SecAo de ArTiGos

» Vitest: Framework de testes utilizado por oferecer execucdo rapida, feedback
agil em tempo de desenvolvimento e suporte nativo para Typescript (Vitest, 2025);

* Docker: Docker ¢ um conjunto de utilitadrios PaaS (Platform as a Service) que
usa virtualizagdo em nivel de sistema operacional para encapsular sofiware em
contéineres portateis e isolados. Foi aplicado devido a sua utilidade para empacotar
servigos necessarios a execucao dos testes ponta a ponta da aplicagao.

Figura 1 — Diagrama de tecnologias utilizadas

Camada de apresentagao ‘ Camada de aplicagdo Camada de persisténcia

C3EIWT

: : //‘ | / \/ ‘ : V‘ ‘ a Prisrrf?
NXT- || ek | | |

\/ Vitest

Fonte: Autor, 2025

Dessa forma, com o uso dessas ferramentas, sera possivel construir um
utilitario eficaz para importar as folhas de pagamento, armazené-las de forma segura e
distribuir os holerites dos funcionarios de forma automatizada.

3 PROCEDIMENTOS METODOLOGICOS
3.1 FolhaNet

O FolhaNet ¢ um sistema focado em atender a necessidade de gerenciar e
automatizar a distribui¢do de folhas salariais dentro de uma empresa, de forma a
evitar o esforco manual de funcionarios do setor de Recursos Humanos para entregar
esses documentos aos funcionarios. Utilizando esse software, € possivel, com poucos
cliques, processar um arquivo PDF que contém todas as folhas de pagamento, separar
o holerite de cada funciondrio e enviar esse arquivo para o colaborador acessar em
uma interface web. Além disso, esse sistema registra em tempo real quais holerites
foram visualizados, permitindo rastreabilidade e controle aos analistas.

Nos topicos seguintes, serdo abordados os requisitos que orientaram o
desenvolvimento do FolhaNet, a sua arquitetura e a metodologia adotada durante o
seu desenvolvimento.

3.2 Requisitos

RBEGDR-98-112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

-\I f'-

Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional

v. 05, n. 02 - 2025
SecAo de ArTiGos

\

Dentre as varias etapas relacionadas a engenharia de software, ha o
levantamento de requisitos, o qual se concentra em dois tipos principais: requisitos
funcionais e requisitos nao funcionais. Os requisitos funcionais determinam as
operagdes que o sistema deve ser capaz de realizar, enquanto os ndo funcionais
descrevem atributos de qualidade, desempenho, seguranga e outras restricdes
relevantes (Morais e Zanin, 2020, p. 96). O contexto de uma empresa de pequeno
porte com estrutura de RH convencional foi utilizado como base para o levantamento
dos requisitos. E possivel visualizar os requisitos funcionais no Quadro 1.

Quadro 1 — Requisitos funcionais do sistema

Identificacao Descricao

RF1 O usuario deve poder acessar seus holerites para visualizar seu salario, beneficios e
descontos mensais.

RE2 O supervisor deve poder acessar os holerites da equipe para revisar as informagdes
salariais.

RF3 O sistema deve ser capaz de receber um arquivo PDF que contenha todos os
holerites, separar as folhas de pagamento por usuario e por ID.

RF4 Deve haver uma inscri¢do nos holerites relativa & competéncia de cada um visando
a visualizagao destes conforme o seu periodo.

RFS O sistema deve oferecer um dashboard com fungdes C.R.U.D. (Create, Read,
Update, Delete) tanto para usuarios quanto para setores.

RF6 Deve existir um componente de pesquisa por nome, e-mail ou setor no dashboard
de usuarios, facilitando a localizagdo de registros.

RF7 Os campos de formularios dos usuarios devem possuir validagdes padrdo, como
formato de e-mail, codigo de folha e padrao seguro de senha.
Caso o upload do arquivo PDF tnico traga novos funciondrios, o sistema deve

RF8 gerar um pré-cadastro desses usuarios com o nome e cddigo de folha presentes em
seus holerites.

Fonte: Autor, 2025.

Além disso, foram levantados os requisitos ndo funcionais, os quais estdo
presentes no Quadro 2.

Quadro 2 — Requisitos ndo funcionais do sistema

Identificacao Descricao

RNF1 O sistema deve ser executado em ambiente de producio no formato Javascript, a
partir da compilag@o dos arquivos Typescript.

RNF2 O software deve assegurar que a fila de envio de e-mails continue funcionando,
mesmo que algum e-mail inexistente esteja presente na lista.

RNF3 A aplicagao deve utilizar um banco de dados relacional.

RNF4 O sistema deve utilizar autenticagdo e autorizac¢ao baseada no padrao JWT (JSON
Web Token).

RNF5 A estilizag@o do projeto deve ser realizada com uma tecnologia que permita a
compilagdo completa do CSS durante a build do projeto.

RNF6 O sistema deve adotar um framework de back-end que ofereca flexibilidade
arquitetural, permitindo o uso de diferentes ferramentas, pacotes e padroes de
design

RNF7 O software deve ser versionado utilizando Git, permitindo um controle mais
detalhado sobre o historico de alteragdes do projeto.

RBEGDR - 98 - 112

E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

ﬁmzcon— Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
N
wNr v. 05, n. 02 - 2025
SecAo de ArTiGos
RNF8 O sistema deve ser disponibilizado em uma intranet corporativa por meio de um

servidor web Nginx.

Fonte: Autor, 2025.

Além dos requisitos funcionais e ndo funcionais, foi necessario reconhecer os
requisitos de dados. Nesse sentido, a aplicagdo possui cinco entidades principais,
sendo elas User, Role, Department, Publish e Payslip. O modelo de dados pode ser
visualizado na Figura 2.

* A entidade User representa um funciondrio e possui 0s seguintes
relacionamentos: Relacionamento "N para M" (muitos para muitos) com a entidade
Role, ou seja, o usudrio pode ter um ou mais papéis € uma Role pode ter varios
usuarios; Relacionamento "1 para 1" com a entidade Department, podendo o usudrio
pertencer a apenas um departamento; Relacionamento "1 para N" com a entidade
Publish, caso tenha permissdo "RH", permitindo que um usudrio com essa permissao
publique varios documentos; Relacionamento "1 para N" com a entidade Payslip, ou
seja, um usudrio pode ter varios holerites.

* A entidade Department representa um setor e tem um relacionamento "1" para
“N” com a entidade User, significando que um unico departamento pode ter varios
funcionarios.

* A entidade Role representa um papel ou permissdo dentro do sofiware e tem
um relacionamento “N para M” com a entidade User.

* A entidade Publish representa uma publicacdo (um documento com varios
holerites) e tem um relacionamento "1" para “N” com a entidade Payslip, o que
significa que uma publicagdo pode ter varias folhas salariais associadas.

* A entidade Payslip representa uma folha de pagamento no sistema e possui 0s
seguintes relacionamentos: Relacionamento "1" para "1" com a entidade User, ou seja,
cada folha de pagamento pertence a um unico usuario; Relacionamento "1" para "1"
com a entidade Publish, ou seja, cada folha de pagamento estd associada a uma Unica
publicacao.

Figura 2 — Modelo de dados

Payslip

User

Publish

id: String <<PK>>

docPublishCompetence:
String

competenceFromDoc:

updatedAt: Date

id: String <<PK>>

payslipCompetence:
String

documentPath: String

observation: String

createdAt: Date

updatedAt: Date

id: String <<PK>>
userPassword: String
userEmail: String

userName: String

Department

id: String <<PK>>

departmentName:
String

departmentName:
String

String photo: String depanmentManager:
. isPublished: Boolean String <<FK>>
documentPath: String 1 aquariuslD: String
L= isReceived: Boolean createdAt: Date
observation: String isActive: Boolean
isActive: Boolean updatedAt: Date
isPublished: Boolean isLogged: Boolean
)) publishld: String
isActive: Boolean <<FK>> departmentld: String
Sshie Role
key: String userld: String <<FK>>
createdAt: Date e
iv: String iv: String roleld: String <<PK>>
updatedAt: Date et e
createdAt: Date key: String P roleName: String

createdAt: Date

updatedAt: Date

Fonte: Autor, 2025.

RBEGDR - 98 - 112

E-ISSN: 2966-1870

https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

_nsccnn; Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
wNr v. 05, n. 02 - 2025

SecAo de ArTiGos

3.3 Arquitetura

A abordagem escolhida para organizar os componentes da aplicagdo foi a
arquitetura em camadas. Nesse paradigma, busca-se particionar a complexidade do
sistema em componentes menores - as camadas - que reinem uma ou varias classes.
As camadas sdo organizadas de forma hierarquica, de modo que uma camada somente
pode usar servicos - como métodos, objetos, classes - da camada imediatamente
inferior.

As vantagens principais dessa maneira de projetar o software envolvem a
facilidade de trocar uma camada por outra e a flexibilidade no reuso dos utilitarios de
uma camada em outra mais superior (Valente, 2020). Neste trabalho, optou-se pela
constru¢do do software com a abordagem de arquitetura em trés niveis. Tais niveis
sao:

* Camada de apresentagdo: responsavel pela interagdo com o usuario. Trata da
exibicdo de informagdes, coleta e processamento de entradas e eventos de interface
tais como cliques, marcagdes, entre outros (Valente, 2020). Neste trabalho, essa
camada ¢ representada pelos componentes React executados dentro do framework
NextJS. A biblioteca React gerencia a renderizacdo da pagina e o NextJS controla o
roteamento;

* Camada de aplicagdo: camada responsavel por implementar as regras de
negocio da aplicacdao (Valente, 2020). No contexto deste trabalho, esse componente
arquitetural ¢ representado por toda ldgica encapsulada no back-end voltada tanto a
manipulacdo de informag¢des quanto a interagdo com o banco de dados;

* Banco de dados: ¢ a camada que persiste os dados processados pelo sistema
(Valente, 2020). No software em questdo, ¢ representada pelo banco PostgreSQL;

A partir do exposto, € possivel compreender qualquer fluxo de eventos dentro
da aplicagdo. A titulo de ilustragdo, focaremos no principal processo dentro do
aplicativo: o carregamento de um arquivo contendo varios holerites e a distribuicao de
cada folha separada para o seu devido proprietario (funcionario). As etapas desse
processo estdo descritas abaixo € um esquema que os ilustra pode ser visualizado na
Figura 3. Passos intermedidrios sdo indicados como subtopicos (3.1, 3.2, etc).

* 1. O analista de recursos humanos faz o upload de um arquivo PDF contendo
os holerites. Essa operacdo de inserir o arquivo ¢ efetuada por meio de uma chamada
a uma rota do back-end executado no servidor;

* 2. O servidor em ExpressJS recebe o documento e o guarda como rascunho
ainda nao publicado (ou seja, ele ainda nao foi separado em varios documentos para
envio);

* 3. Por meio de um clique do usudrio, a rota de separagdo de arquivos ¢€
acionada no back-end, o qual atua separando o documento PDF de origem em varios
holerites em PDF individuais.

* 4. O servico de separacdo aciona um script em Python que ¢ executado dentro
de um servidor Flask. Esse script captura cada holerite individual, extrai o texto
utilizando uma biblioteca de OCR (Optical Character Recognition) denominada
pytesseract e envia o conteudo textual para o servidor ExpressJS.

* 5. O servidor recebe o texto e captura o coédigo de folha e nome do funcionario,
e, junto ao ID universal deste, associa o holerite ao colaborador e grava na base de
dados. Em casos em que ndo ha o identificador de folha no banco, um pré-cadastro do
usudrio ¢ criado e a folha salarial ¢ associada a ele. Os holerites gravados com seus

RBEGDR - 98 - 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

ﬁmzcon— Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
N, T
wNr v. 05, n. 02 - 2025

SecAo de ArTiGos

respectivos donos sdo publicados para visualizagao. Cada documento ¢ armazenado
em formato criptografado.
* 6. Uma notificag¢do via e-mail ¢ enviada aos usuarios.

Figura 3 — Processo executado para separar os holerites

(1 e 2). Upload como rascunho » Servidor de e-mail
6. Envia
ema|ll 30 | 5. Extrai codigo de folha, nome,
usuario associa ao ID do usuario e
3. Comando envia comando de gravagao
para envio
»~ »~
Interface Web Servidor ExpressJS Bancp N
. L5 (Persiste dados)
5.2 Retorna como

publicaciio envieda 5.1 Retorna consulta

4. Retorna o contetdo 3.1 Envia cada pagina
textual de cada holerite para extragao de texto

Servigo de extragao
de texto

Fonte: Autor, 2025.

A partir dessa explicagdo, ¢ possivel verificar a presenca das trés camadas em
todo o processo. A camada de apresentacdo renderiza os componentes € captura os
eventos (cliques) de upload e de envio realizados pelo analista. A camada de
aplicagdo realiza todo o processamento relativo a separar os holerites, extrair o texto
de cada um, associar a folha ao funcionario correto e acionar os servi¢os de gravagao
no banco. O banco de dados, por sua vez, persiste as informagdes processadas em
cada etapa.

Um outro procedimento na aplicagdo que exemplifica o funcionamento da
arquitetura € o processo de um usudrio visualizar seu holerite. Os passos estdo
descritos abaixo e um esquema que os ilustra pode ser visualizado na Figura 4. Passos
intermediarios sao indicados como subtopicos.

* 1. O funcionario acessa o componente que renderiza os seus holerites e
seleciona um documento por meio de um clique em um simbolo de "olho aberto";

e 2. Uma chamada ¢ feita a uma rota do back-end que captura o identificador do
documento que se deseja visualizar e decifra-o de forma que o arquivo criptografado
se torne visualizavel;

* 3. O retorno contendo o blob binario ¢ enviado para o usudrio e renderizado
pelo componente React;

* 4. De forma paralela, assim que o usuario clica no simbolo de visualizagao,
uma outra rota de API ¢ acionada. Essa rota troca a coluna “isReceived” associado ao
documento dentro da base de dados, além de atualizar o campo de “updatedAt”. Isso
permite identificar se o holerite foi visualizado e, se sim, em qual data e hora.

RBEGDR-98-112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

='mzzcnn‘; Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
wNr v. 05, n. 02 - 2025
SecAo de ArTiGos
Figura 4 — Processo para o usuario visualizar o holerite
4 Aidis visiolindo. siita bedidsoars 4.1 Back-end marca o documento como
PRON N g e visualizado no banco, atualizando
marcar como documento visualizado S e
updatedAt (data da visualizagao)
1. Envia pedido do usuario ao 2. Busca por documento
clicar no botao de visualizar criptografado no banco.
Y \ 4
Interface Web Servidor ExpressJS Banco de dados

3.1 Decifra o contetido e envia para 3. Retorna documento
o componente renderizar o holerite criptografado

Fonte: Autor, 2025.

Novamente, a partir deste processo apresentado acima, ¢ possivel verificar o
papel de cada camada para a execugdo correta da funcionalidade. A camada de
apresentacao renderiza o botdo de visualizar e envia a chamada para a API da camada
de aplicacdo. Esta ultima, por sua vez, busca o arquivo na camada de persisténcia
(banco de dados), decifra o documento criptografado e envia o conteudo para a
camada de aplicagdo renderizar para o usuario. Além disso, ela grava se o holerite foi
visualizado e em que data isso ocorreu a partir de outra interagdo com o banco.

3.4 Desenvolvimento

O processo de desenvolvimento da aplicagdo foi iniciado a partir dos
requisitos funcionais e ndo funcionais levantados durante a interagdo inicial com os
stakeholders. Apos isso, os requisitos foram segmentados em funcionalidades que,
juntas, cumprem a exigéncia feita pelo(s) requisito(s) correspondente(s). A seguir, 0s
topicos relativos a construcao do back-end e do front-end serao abordados.

3.4.1 Back-end

O desenvolvimento do back-end foi realizado de forma gradual, sendo que as
funcionalidades basilares do sistema, tais como autenticagdo e operagdes de
manipulagdo das entidades basicas (User, Department ¢ Role), foram priorizadas em
um primeiro momento. Apos isso, os requisitos funcionais foram -classificados
conforme o grau de importancia para o problema de negocio e, assim, seguiu-se a
implementag¢do de cada um. A organizacdo dos diretorios do projeto foi definida de
forma que refletisse a arquitetura escolhida. Nesse sentido, o projeto esta estruturado
da seguinte maneira:

» Originalpdfs, payslips e photos: pastas destinadas ao armazenamento de
arquivos bindrios, sendo eles os relatdrios de origem dos holerites, as folhas de
pagamento em si € as imagens de perfil dos usuarios, respectivamente;

* Prisma: este diretorio contém o esquema de dados do projeto, além de uma
subpasta que contém todos os arquivos de migracao realizadas no banco de dados;

» Config: possui o arquivo de configuracdo do utilitdrio multer, uma ferramenta
que auxilia o upload dos arquivos em PDF;

RBEGDR-98-112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

_nsccnn; Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
wNr v. 05, n. 02 - 2025

SecAo de ArTiGos

* Controllers: contém todas as classes encarregadas de recepcionarem as
requisi¢des HTTP e acionar os devidos servigos para respondé-las;

* Middlewares: contém os arquivos que interceptam as requisicoes HTTP antes
de estas chegarem aos controllers. Utilizadas para verificar se o usudrio estd
autenticado e autorizado a acessar o recurso;

* Prisma: contém o arquivo de configuracdo que instancia o utilitdrio prisma
para uso interno na aplicacao;

» Services: armazena as classes que lidam diretamente com a manipulacdo do
banco de dados por meio do uso do utilitario do prisma.

» Utils: contém arquivos uteis para integracdo com bibliotecas de envio de e-
mails, além de erros personalizados;

* Arquivo “routes”: arquivo que contém todas as rotas da aplicagao;

* Arquivo “server”: arquivo que efetivamente instancia o servidor ExpressJS,
além de servir para configurar o tratamento global de erros, a politica de Cross Origin,
a fonte das variaveis ambiente, os diretorios de arquivos binarios e a fonte de rotas da
aplicagao.

Todo o aplicativo foi construido a partir do conceito de que uma rota esta
conectada a um controller, o qual, por sua vez, chama um servigo que faz a operagado
necessaria na camada de persisténcia para responder corretamente a requisi¢ao feita
pela camada de apresentacdo. Como exemplo, pode-se discorrer sobre uma rota de
listagem de setores (GET ‘/departments’). A rota, ao ser chamada, invoca o método
“handle” de um controller chamado “ReadAllDepartmentsController” o qual consiste
em uma classe que tratara a requisi¢do realizada.

Ap6s isso, o controller instancia o servigo “ReadAllDepartmentsService” e
invoca o método “execute” deste. Esse método acionara o utilitario Prisma para fazer
a busca na base de informacgdes. A resposta deste método — que contém os dados dos
setores — ¢ armazenada em uma varidvel que, posteriormente, ¢ retornada dentro de
um corpo em JSON para a camada solicitante. A classe do servigo atua, em
praticamente todas as vezes, invocando o utilitario do ORM Prisma para fazer a busca
(ou qualquer que seja a operagdo desejada) na base de dados.

Todos as funcionalidades derivadas dos requisitos foram implementadas, uma
a uma, por meio desta abordagem. Dessa forma, foi possivel separar a logica
responsavel pelas requisicdoes das regras de processamento relacionadas com a
manipulacdo do banco de dados.

3.4.2 Front-end

A construgdo do front-end foi feita gradualmente, partindo das telas essenciais
de cadastro e login dos usudrios e posteriormente avangando para as paginas
relacionadas ao problema de negodcio. Tal como citado, essa camada do sistema foi
construida utilizando o framework Next]JS, o qual influenciou a organizacao dos
arquivos.

Portanto, o projeto estd organizado com a seguinte estrutura:

* Diretdrio ".next": contém os arquivos do framework NextJS;

* Public: contém os arquivos estaticos da aplicagdo, como logotipos;

* Styles: contém os estilos de CSS globais da aplicagao;

» Components: possui os componentes React que sao reutilizados em diferentes
telas do aplicativo;

RBEGDR-98-112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

_nsccnn; Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
wNr v. 05, n. 02 - 2025

SecAo de ArTiGos

* Contexts: armazena os arquivos de contexto do front-end, os quais possuem
fungdes com chamadas ao back-end que podem ser invocadas em qualquer
componente do projeto;

» Pages: sdo os componentes reativos que constroem as diferentes telas que o
usudrio acessa ao utilizar o software;

* Arquivo “app”: permite injetar o CSS global e configurar os providers que
iniciam os diferentes contextos do sistema;

* Arquivo “document’: utilizado para customizar os atributos de head e body do
HTML inicial que € retornado no primeiro carregamento via renderizagao do lado do
servidor (SSR);

* Index: ¢ o componente que renderiza a primeira pagina a ser acessada. No caso,
a pagina de login;

» Utils: contém utilitarios de controle de renderizacdo das telas. A partir deles, ¢
possivel bloquear, no nivel da camada de aplicagdo, quais telas um usudrio pode
acessar a depender da sua permissao;

+ Services: contém os arquivos que configuram utilitarios para chamar a API do
back-end.

A légica fundamental do front-end neste projeto se baseia em paginas que sio
componentes React, cada uma com sua propria estrutura e estilo CSS. Esses
componentes encapsulam sua propria ldgica, que pode envolver chamadas a fungdes
internas ou interagdes com fungdes presentes nos diferentes contextos do NextJS via
Context API, uma funcionalidade do React.

Dessa forma, ¢ possivel ter um programa cujas telas sdao reativas e fazem
diferentes chamadas a fun¢des de acordo com os eventos disparados pelo usudrio. As
Figuras 5 e 6 ilustram as paginas de dashboard de publicagdes cadastradas pelo
analista de recursos humanos e a tela de visualizagdo de um holerite que ¢ mostrada
ao usudrio, respectivamente. O arquivo exposto ¢ apenas um PDF falso produzido
com o mesmo padrdo de texto extraido dos holerites que seguem o layout emitido
pelo sistema contabil.

Figura 5 — Dashboard de publicagoes
m = Cadastros a Holerites Minha equipo Meou Perfil

Ultimas publicagdes &

| Maio de 2024

Fonte: Autor, 2025.

RBEGDR - 98 - 112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

;'mzccnn— Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
-, r
wNr v. 05, n. 02 - 2025

SecAo de ArTiGos

Figura 6 — Modal de visualizacao do holerite selecionado

= 948274df-b559-4673-a65f-2¢b62055b8e4.

COOPERATIVA /

CNPJ: 075

CC: 1087

Codigo: 1087

Nome do Funcionério: EDGAR COSTA FERREIRA
CBO: 214705

Departamento: ENGENHARIA

Filial: 1

Folha Mensal: Maio de 2024

Admissag- 12/02/2018

HORAS NORMAIS 7.850,00
REFLEXO EXTRAS DSR X 0,95
ANUENIO COOPERATIVAS X 16,00
HORAS EXTRAS 50% 395

CONTRIBUICAO AO PAT

Assinatura do Funcionario

Fechar

Fonte: Autor, 2025.
3.5 Testes

Os testes foram desenvolvidos com foco em uma abordagem denominada
“ponta a ponta” (E2E), utilizando a ferramenta Vitest em conjunto com a biblioteca
Supertest para simular requisicdes HTTP contra a aplicagdo. Os testes sdo executados
em um ambiente separado a partir da construgdo de um schema de dados dindmico a
cada execucdo, o que garante isolamento e confiabilidade de resultados.

O programa Flask de extracdo de texto foi empacotado com Docker de modo
que seja executado em paralelo e monitorado com a biblioteca wait-on, de maneira a
garantir que esteja disponivel antes da execugdo da suite. A suite de testes abrange
dois focos principais: a funcionalidade crucial da aplicacdo (receber um arquivo,
executar a separacdo deste e armazenar holerites) e o acesso autenticado do usuario a
plataforma.

A partir do primeiro objetivo, construiu-se um teste automatizado que
reproduz a criagdo da publicacdo, a execugdo do servigo de separacdo e criptografia, o
armazenamento desses dados no formado desejado e a listagem das informagoes.
Acerca do fluxo de teste da autenticacdo, a suite testa o login de usuario e o acesso
deste as suas informagdes de perfil.

Com isso, foi possivel criar uma esteira de testes que cobre a principal fungao
de interesse do sistema de forma confiavel e realista, validando as etapas criticas do
fluxo de publicacdo e acesso aos documentos. A suite de testes pode ser visualizada
na Figura 7.

Figura 7 — Suite representada na interface grafica do Vitest

/ RUNNING (0)
/

tests/split-pdf-real.e2e-spec.ts

publish and split (e2e)

upload, publish and split

user login and access your profile (e2e)

Fonte: Autor, 2025.

RBEGDR-98-112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

_nsccnn; Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
wNr v. 05, n. 02 - 2025

SecAo de ArTiGos

4 RESULTADOS E DISCUSSOES

A execucdo da suite de testes apresentou resultados satisfatorios. Os cenarios
previstos foram validados com sucesso, desde o upload e criacao da publicacdo até a
validacdo do armazenamento dos arquivos em formato cifrado e acesso autenticado do
usuario. A esteira de testes demonstrou robustez ao isolar o ambiente a cada execugao
por meio do uso de schemas dindmicos do banco de dados.

A integracdo com o servigo externo, empacotado em container Docker e
monitorado durante os testes, mostrou-se eficaz. O uso de mocks permitiu controlar a
autenticacao e validar os fluxos esperados de autorizagdo e seguranca da aplicagao.

Apesar da cobertura eficiente dos fluxos principais, identificou-se que ha a
limitag¢do representada pela auséncia de testes unitarios que cubram modulos menores
da aplicacdo. A abordagem atual foca em validar o comportamento global da
aplicagdo, carecendo de testes especificos para fungdes da camada de negdcio. Dessa
forma, conclui-se que a introducdo de testes unitarios pode contribuir para maior
granularidade na deteccao de falhas e reforgo da confiabilidade a longo prazo, ficando
no dominio de trabalhos futuros.

5 CONCLUSOES

O trabalho desenvolvido atingiu o objetivo principal pelo qual foi concebido:
construir um sistema capaz de automatizar o processo de separagdo, criptografia e
disponibiliza¢do de holerites de forma segura e com acesso controlado. A arquitetura
projetada, com integracao de um back-end em NodelJS, banco de dados PostgreSQL e
servigo externo em Flask para extracdo de dados se demonstrou eficiente para resolver
o problema apresentado.

A implementa¢do de uma suite de testes ponta a ponta contribuiu para validar
os fluxos principais do sistema de forma isolada e confiavel. O uso de conteinerizagao
e schemas dinamicos reforgou a robustez do ambiente de testes.

Como limitagdo, destaca-se a auséncia de testes unitarios. Apesar disso, a
solugdo entregue atende ao escopo proposto em quesitos técnicos e oferece uma base
estruturada para futuras extensdes, como dashboards, relatorios e auditoria de acessos.

REFERENCIAS

DIMEP. Controle de Ponto. Disponivel em:
https://www.dimep.com.br/solucoes/controle-de-ponto. Acesso em: 30 mar. 2025.

DOCKER. Docker — platform designed to help developers build, share, and run
container applications. Disponivel em: https://www.docker.com/. Acesso em: 28
mai. 2025.

EXPRESSJS. Express — Fast, unopinionated, minimalist web framework for
Node.js. Disponivel em: https://expressjs.com/. Acesso em: 30 mar. 2025.

FLASK. Flask Documentation. Disponivel em:
https://flask.palletsprojects.com/en/stable/. Acesso em: 30 mar. 2025.

RBEGDR-98-112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

aly,

_nszcnn; Revista Brasileira de Estudos de GestAo £ Desenvolvimento Regional
wNr v. 05, n. 02 - 2025

SecAo de ArTiGos

JWT. Introduction to JSON Web Tokens. Disponivel em: https://jwt.io/introduction.
Acesso em: 30 mar. 2025.

MORALIS, Izabelly S.; ZANIN, Aline. Engenharia de software. 1. ed. Porto Alegre:
SAGAH, 2020.

NEXT.JS. Next.js Documentation. Disponivel em: https://nextjs.org/docs. Acesso
em: 30 mar. 2025.

OLIVEIRA, Luana Y. M.; OLIVEIRA, Pablo R. B.; SAWITZKI, Roberta; et al.
Gestao de pessoas. 1. ed. Porto Alegre: SAGAH, 2018.

POSTGRESQL. PostgreSQL: The World’s Most Advanced Open Source
Relational Database. Disponivel em: https://www.postgresql.org/ . Acesso em: 2 set.
2024.

PRISMA. Prisma. Disponivel em: https://www.prisma.io/. Acesso em: 30 mar. 2025.

TECSMART. EPM — Solu¢ao completa de gestao de RH. Disponivel em:
https://www.tecsmart.com.br/epm/ . Acesso em: 30 mar. 2025.

TYPESCRIPT. TypeScript: TypeScript for the New Programmer. Disponivel em:
https://www.typescriptlang.org/pt/docs/handbook/typescript-from-scratch.html.
Acesso em: 30 mar. 2025.

VALENTE, M. T. Engenharia de software moderna: principios e praticas para
Desenvolvimento de Software com Produtividade. [S.1.]: Independente, 2020.

VITEST. Vitest — next generation testing framework powered by Vite. Disponivel
em: https://vitest.dev/. Acesso em: 28 mai. 2025.

RBEGDR-98-112 E-ISSN: 2966-1870 https://doi.org/10.30681/rbegdr.v5i2.14076

