Poluentes industriais: Conceitos e tendências de tratamento

Autores

  • Pedro Henrique Mainardi Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brasil.
  • Ederio Dino Bidoia Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, SP, Brasil.

DOI:

https://doi.org/10.5327/rcaa.v18i2.4259

Palavras-chave:

recurso hídrico, rejeito industrial, gestão ambiental, economia ambiental, resíduo industrial, destoxificação.

Resumo

O desenvolvimento insustentável e o demasiado consumo têm causado um alarmante aumento da poluição em praticamente todo o planeta Terra. Os resíduos industriais têm sido responsabilizados por uma grande parcela dessa poluição. Nesta revisão, foram descritas as últimas pesquisas quanto ao desenvolvimento de novos métodos e estratégias de tratamento de resíduos e destoxificação de áreas contaminadas. O monitoramento ecológico, que considera os aspectos físico, químicos e biológicos dos resíduos, tem sido extremamente útil qualificação, quantificação e definição dos impactos ambientais causados pelos compostos poluidores. Estratégias de uso consciente e de reciclagem de água, matéria-prima e componentes do processo industrial, foram vistos por serem temas cada vez mais difundidos, capazes de reduzir as perdas envolvidas nos processos e nos custos gerais de produção. Estratégias de prevenção da poluição, que visam práticas que reduzem ou eliminam a carga poluidora, como a modernização de técnicas, de processos e de gestão empresarial, têm incluído a participação de profissionais de diversas áreas, incluindo membros da comunidade e pesquisadores. A avaliação do impacto tem considerado aspectos quanto a segurança e higiene no ambiente de trabalho e na comunidade, além da construção de uma agenda político-institucional na redefinição das normativas, que considerem o momento socioambiental brasileiro e provenham, sobretudo, melhor qualidade quanto ao meio ambiente e a vida como um todo.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

ABO?ELELA, S.I.; EL?GOHARY, F.A.; ALI, H.I.; WAHAAB, R.S.A. Treatability studies of textile wastewater. Environmental Technology Letters, v.9, n.2, p.101-108, 1988. http://dx.doi.org/10.1080/09593338809384546

ADEGOKE, A.A.; SINGH, G.; STENSTRÖM, T.A. Biosensors for monitoring pharmaceutical nanocontaminants and drug resistant bacteria in surface water, subsurface water and wastewater effluent for reuse. Nanoparticles in Pharmacotherapy, p.525-559, 2019. http://dx.doi.org/10.1016/b978-0-12-816504-1.00014-4

AGGARWAL, V.K.; STAUBITZ, A. C.; OWEN, M. Optimization of the Mizoroki?Heck Reaction Using Design of Experiment (DoE). Organic Process Research & Development, v.10, n.1, p.64–69, 2006. http://dx.doi.org/10.1021/op058013q

AHMADZADEH, S.; DOLATABADI, M. Modeling and kinetics study of electrochemical peroxidation process for mineralization of bisphenol A; a new paradigm for groundwater treatment. Journal of Molecular Liquids, v.254, p.76-82, 2018. http://dx.doi.org/10.1016/j.molliq.2018.01.08

AKKAYA, G.K.; ERKAN, H. S.; SEKMAN, E.; TOP, S., KARAMAN, H.; BILGILI, M.S.; ENGIN, G.O. Modeling and optimizing Fenton and electro-Fenton processes for dairy wastewater treatment using response surface methodology. International Journal of Environmental Science and Technology, v.16, n.5, p.2343-2358, 2018. http://dx.doi.org/10.1007/s13762-018-1846-0

AKPOR, O. B.; MUCHIE, B. Environmental and public health implications of wastewater quality. African Journal of Biotechnology, v.10, n.13, p.2379-2387, 2011.

ANTIZAR-LADISLAO, B.; TURRION-GOMEZ, J.L. Decentralized energy from waste systems. Energies, v.3, n.2, p.194-205, 2010. https://doi.org/10.3390/en3020194

ANTUNES, R., FERRAZ, D., GARCIA, L., THOMAZ, D., LUQUE, R., LOBÓN, G., GIL, E.; LOPES, F. Development of a polyphenol oxidase biosensor from jenipapo fruit extract (Genipa americana L.) and determination of phenolic compounds in textile industrial effluents. Biosensors, v.8, n.2, p.47, 2018. https://doi.org/10.3390/bios8020047

BEHERA, B.; REDDY, V.R. Environment and accountability: Impact of industrial pollution on rural communities. Economic and Political Weekly, p.257-265, 2002.

BELTRAME, L.T.C. Caracterização de Efluente Têxtil e Proposta de Tratamento. Natal-RN. Universidade Federal do Rio Grande do Norte, 2000. 161p. Dissertação (Mestrado em Engenharia Química), Universidade Federal do Rio Grande do Norte, 2000.

BES-PIÁ, A.; IBORRA-CLAR, M.I.; IBORRA-CLAR, A.; MENDOZA-ROCA, J.A.; CUARTAS-URIBE, B.; ALCAINA-MIRANDA, M.I. Nanofiltration of textile industry wastewater using a physicochemical process as a pre-treatment. Desalination, v.178, n.1-3, p.343-349, 2005. http://dx.doi.org/10.1016/j.desal.2004.11.044

BEZERRA, M.A.; SANTELLI, R.E.; OLIVEIRA, E.P.; VILLAR, L.S.; ESCALEIRA, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, v.76, n.5, p.965-977, 2008. http://dx.doi.org/10.1016/j.talanta.2008.05.019

BHAT, S.A.; SINGH, S.; SINGH, J.; KUMAR, S.; BHAWANA; VIG, A. Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresource Technology, v.252, p.172-179, 2018. http://dx.doi.org/10.1016/j.biortech.2018.01.003

BHATTACHARJEE, S. Removal of biological organic matter and suspended solid from textile wastewater using anaerobic-aerobic process: a review of an industrial implementation. Journal of Scientific Research, v.9, n.2, p.267-275, 2017. http://dx.doi.org/10.3329/jsr.v9i2.31302

BURKHARD, R.; DELETIC, A.; CRAIG, A. Techniques for water and wastewater management: a review of techniques and their integration in planning: a review of techniques and their integration in planning. Urban Water, v.2, n.3, p.197-221, 2000. http://dx.doi.org/10.1016/s1462-0758(00)00056-x

CASTELLET-VICIANO, L.; HERNÁNDEZ-CHOVER, V.; HERNÁNDEZ-SANCHO, F. Modelling the energy costs of the wastewater treatment process: the influence of the aging factor: The influence of the aging factor. Science of The Total Environment, v.625, p.363-372, 2018. http://dx.doi.org/10.1016/j.scitotenv.2017.12.304

?ERNÍK, M.; NOSEK, J.; FILIP, J.; HRABAL, J.; ELLIOTT, D.W.; ZBO?IL, R. Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: proof of concept: Proof of concept. Water Research, v.154, p.361-369, 2019. http://dx.doi.org/10.1016/j.watres.2019.01.058

CHAPMAN, P.M. Ecotoxicology and pollution-Key issues. Marine Pollution Bulletin, v.31, n.4-12, p.167-177, 1995. http://dx.doi.org/10.1016/0025-326x(95)00101-r

CHEN, C.; WU, H. Lightweight bricks manufactured from ground soil, textile sludge, and coal ash. Environmental Technology, v.39, n.11, p.1359-1367, 2017. http://dx.doi.org/10.1080/09593330.2017.1329353

CHENG, Y.; HUANG, T.; CHENG, L.; SUN, Y.; ZHU, L.; LI, Y. Structural characteristic and ammonium and manganese catalytic activity of two types of filter media in groundwater treatment. Journal of Environmental Sciences, v.72, p.89-97, out. 2018. http://dx.doi.org/10.1016/j.jes.2017.12.014

CLARK, J.S., CARPENTER, S.R., BARBER, M., COLLINS, S., DOBSON, A., FOLEY, J.A., LODGE, D.M., PASCUAL, M., PIELKE, R., PIZER, W.; PRINGLE, C. Ecological Forecasts: an emerging imperative: An Emerging Imperative. Science, v.293, n. 5530, p.657-660, 2001. http://dx.doi.org/10.1126/science.293.5530.657

CLARKE, E.A.; ANLIKER, R. Safety in use of organic colorants: health and safety aspects. Review of Progress in Coloration and Related Topics, v.14, n. 1, p.84-89, 1984. https://doi.org/10.1111/j.1478-4408.1984.tb00048.x

CORREIA, V.M.; STEPHENSON, T.; JUDD, S.J. Characterisation of textile wastewaters?a review. Environmental Technology, v.15, n. 10, p.917-929, 1994. https://doi.org/10.1080/09593339409385500

DELLAGNEZZE, B.M.; GOMES, M.B.; De OLIVEIRA, V.M. Microbes and Petroleum Bioremediation. Microbial Action on Hydrocarbons, p.97-123, 2018. https://doi.org/10.1007/978-981-13-1840-5_5

DENTEL, S.K. Coagulant control in water treatment. Critical Reviews in Environmental Science and Technology, v.21, n.1, p.41-135, 1991. https://doi.org/10.1080/10643389109388409

DER BRUGGEN, B.V.; CANBOLAT, Ç.B.; LIN, J.; LUIS, P. The Potential of Membrane Technology for Treatment of Textile Wastewater. Green Chemistry and Sustainable Technology, p.349-380, 2017. http://dx.doi.org/10.1007/978-981-10-5623-9_13

DEY, S.; ISLAM, A. A review on textile wastewater characterization in Bangladesh. Resources and Environment, v.5, n.1, p.15-44, 2015.

DO, M.H.; NGO, H.H.; GUO, W.S.; LIU, Y.; CHANG, S.W.; NGUYEN, D.D.; NGHIEM, L.D.; NI, B.J. Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review. Science of The Total Environment, v.639, p.910-920, 2018. http://dx.doi.org/10.1016/j.scitotenv.2018.05.136

EL-BESTAWY, E.; EL-MASRY, M.H.; NAWAL, E. The potentiality of free Gram-negative bacteria for removing oil and grease from contaminated industrial effluents. World Journal of Microbiology and Biotechnology, v.21, n.6-7, p.815-822, 2005. https://doi.org/10.1007/s11274-004-2239-8

EVANS, G.G.; FURLONG, J. Environmental biotechnology: theory and application. John Wiley & Sons, 2003. 302p.

FREEMAN, H.; HARTEN, T.; SPRINGER, J.; RANDALL, P.; CURRAN, M.A.; STONE, K. Industrial pollution prevention! A critical review. Journal of the Air & Waste Management Association, v.42, n.5, p.618-656, 1992. http://dx.doi.org/10.1080/10473289.1992.10467016

GAVRILESCU, M. Environmental biotechnology: achievements, opportunities and challenges. Dynamic biochemistry, Process Biotechnology and Molecular Biology, v.4, n.1, p.1-36, 2010.

GAVRILESCU, M.; DEMNEROVÁ, K.; AAMAND, J.; AGATHOS, S.; FAVA, F. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, v.32, n.1, p.147-156, 2015. http://dx.doi.org/10.1016/j.nbt.2014.01.001

GEEM, Z.W.; CHUNG, S.Y.; KIM, J. Improved optimization for wastewater treatment and reuse system using computational intelligence. Complexity, v.2018, p.1-8, 2018. http://dx.doi.org/10.1155/2018/2480365

GHAEDI, A.M.; KARAMIPOUR, S.; VAFAEI, A.; BANESHI, M.M.; KIAROSTAMI, V. Optimization and modeling of simultaneous ultrasound-assisted adsorption of ternary dyes using copper oxide nanoparticles immobilized on activated carbon using response surface methodology and artificial neural network. Ultrasonics Sonochemistry, v.51, p.264-280, 2019. http://dx.doi.org/10.1016/j.ultsonch.2018.10.007

GHALY, A.E.; ANANTHASHANKAR, R.; ALHATTAB, M.V; RAMAKRISHNAN, V.V. Production, characterization and treatment of textile effluents: a critical review. Journal of Chemical Engineering & Process Technology, v.5, n.1, p.1-19, 2014.

GIORDANO, G. Tratamento e controle de efluentes industriais. Revista ABES, v.4, n.76, 2004.

GREENLEE, L.F.; LAWLER, D.F.; FREEMAN, B.D.; MARROT, B.; MOULIN, P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water research, v.43, n.9, p.2317-2348, 2009. http://dx.doi.org/10.1016/j.watres.2009.03.010

GUARATINI, C.C.I.; ZANONI, M.V.B. Corantes têxteis. Química Nova, p.71-78, 2000. http://dx.doi.org/10.1590/s0100-40422000000100013

HARUN, N.; IBRAHIM, W.H.W.; LUKMAN, M.F.; YUSOFF, M.H.M.; DAUD, N.F.S.; ZAINOL, N. Process simulation of anaerobic digestion process for municipal solid waste treatment. Anaerobic Digestion Processes, p.71-83, 2018. http://dx.doi.org/10.1007/978-981-10-8129-3_5

HASSAN, S.H.; VAN GINKEL, S.W.; HUSSEIN, M.A.M.; ABSKHARON, R.; OH, S. Toxicity assessment using different bioassays and microbial biosensors. Environment International, v.92-93, p.106-118, 2016. http://dx.doi.org/10.1016/j.envint.2016.03.003

HOFFMAN, D.J.; RATTNER, B.A.; BURTON J.; G.A.; CAIRNS, J. Handbook of ecotoxicology. CRC press, 2002. 1315p.

HOLKAR, C.R.; JADHAV, A.J.; PINJARI, D.V.; MAHAMUNI, N.M.; PANDIT, A.B. A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, v.182, p.351-366, 2016. http://dx.doi.org/10.1016/j.jenvman.2016.07.090

HOPE, B.K. An examination of ecological risk assessment and management practices. Environment International, v.32, n.8, p.983-995, 2006. http://dx.doi.org/10.1016/j.envint.2006.06.005

HOVI, T.; STENVIK, M.; PARTANEN, H.; KANGAS, A. Poliovirus surveillance by examining sewage specimens. Quantitative recovery of virus after introduction into sewerage at remote upstream location. Epidemiology and Infection, v.127, n.01, p.101-106, 2001. http://dx.doi.org/10.1017/s0950268801005787

HUNGER, K. Toxicology and toxicological testing of colorants. Review of progress in coloration and related topics, v.35, p.76, 2005.

HURTADO-GALLEGO, J.; PULIDO-REYES, G.; GONZÁLEZ-PLEITER, M.; FERNÁNDEZ-PIÑAS, F. Luminescent microbial bioassays and microalgal biosensors as tools for environmental toxicity evaluation. Handbook of Cell Biosensors, p.1-58, 2019. http://dx.doi.org/10.1007/978-3-319-47405-2_89-1

HUSAIN, Q. Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Critical Reviews in Biotechnology, v.26, n.4, p.201-221, 2006. http://dx.doi.org/10.1080/07388550600969936

ITE, A.E.; IBOK, U.J. Role of plants and microbes in bioremediation of petroleum hydrocarbons contaminated soils. International Journal of Environmental Bioremediation & Biodegradation, v.7, n.1, p.1-19, 2019.

IVSHINA, I.B.; KUYUKINA, M.S. Specialized microbial resource centers: a driving force of the growing bioeconomy: a driving force of the growing bioeconomy. Soil Biology, p.111-139, 2018. http://dx.doi.org/10.1007/978-3-319-96971-8_4

JUNG, Y.T.; NARAYANAN, N.C.; CHENG, Y. Cost comparison of centralized and decentralized wastewater management systems using optimization model. Journal of Environmental Management, v.213, p.90-97, 2018. http://dx.doi.org/10.1016/j.jenvman.2018.01.081

KAHRU, A.; IVASK, A.; KASEMETS, K.; PÕLLUMAA, L.; KURVET, I.; FRANÇOIS, M.; DUBOURGUIER, H. Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead, and cadmium. Environmental Toxicology and Chemistry, v.24, n.11, p.2973-2982, 2005. http://dx.doi.org/10.1897/05-002r1.1

KANU, I.; ACHI, O.K. Industrial effluents and their impact on water quality of receiving rivers in Nigeria. Journal of Applied Technology in Environmental Sanitation, v.1, n.1, p.75-86, 2011.

KIM, S. Application of response surface method as an experimental design to optimize coagulation–flocculation process for pre-treating paper wastewater. Journal of Industrial and Engineering Chemistry, v.38, p.93-102, 2016. http://dx.doi.org/10.1016/j.jiec.2016.04.010

KUMAR, G.; PRASAD, J.S.; SUMAN, A.; PANDEY, G. Bioremediation of petroleum hydrocarbon-polluted soil using microbial enzymes. Smart Bioremediation Technologies, p.307-317, 2019. http://dx.doi.org/10.1016/b978-0-12-818307-6.00016-0

KUSHWAHA, J.P.; SRIVASTAVA, V.C.; MALL, I.D. Treatment of dairy wastewater by commercial activated carbon and bagasse fly ash: parametric, kinetic and equilibrium modelling, disposal studies: Parametric, kinetic and equilibrium modelling, disposal studies. Bioresource Technology, v.101, n.10, p.3474-3483, 2010. http://dx.doi.org/10.1016/j.biortech.2010.01.002

KUYUKINA, M.; KRIVORUCHKO, A.; IVSHINA, I. Hydrocarbon- and metal-polluted soil bioremediation: progress and challenges: progress and challenges. Microbiology Australia, v.39, n.3, p.133-136, 2018. http://dx.doi.org/10.1071/ma18041

LESON, G.; WINER, A.M. Biofiltration: an innovative air pollution control technology for VOC emissions: An innovative air pollution control technology for VOC emissions. Journal of The Air & Waste Management Association, v.41, n.8, p.1045-1054, 1991. http://dx.doi.org/10.1080/10473289.1991.10466898

LI, D.; WANG, J.; DING, Y.; YAO, H.; HUANG, Y. Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage. Applied Energy, v.236, p.1168-1182, 2019. http://dx.doi.org/10.1016/j.apenergy.2018.12.040

LIANG, Y.; ZHU, H.; BAÑUELOS, G.; YAN, B.; ZHOU, Q.; YU, X.; CHENG, X. Constructed wetlands for saline wastewater treatment: a review: A review. Ecological Engineering, v.98, p.275-285, 2017. http://dx.doi.org/10.1016/j.ecoleng.2016.11.005

LIU, Y.; WANG, W.; SHAH, S.B.; ZANAROLI, G.; XU, P.; TANG, H. Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Applied Microbiology and Biotechnology, v.104, n.1, p.427-437, 2019. http://dx.doi.org/10.1007/s00253-019-10271-w

MA, L.; DENG, F.; YANG, C.; GUO, C.; DANG, Z. Bioremediation of PAH-contaminated farmland: field experiment: field experiment. Environmental Science and Pollution Research, v.25, n.1, p.64-72, 2016. http://dx.doi.org/10.1007/s11356-016-7906-4

MAINARDI, P.H.; BIDOIA, E.D. Microbial population inhibition method through spectrophotometry absorption of visible light applied to ecotoxicological analyses. Journal of Applied Biotechnology, v.8, n.1, p.1-17, 2020. http://dx.doi.org/10.5296/jab.v8i1.16633

MALVESTITI, J.A.; FAGNANI, E.; SIMÃO, D.; DANTAS, R.F. Optimization of UV/H2O2 and ozone wastewater treatment by the experimental design methodology. Environmental Technology, v.40, n. 15, p.1910-1922, 2018. http://dx.doi.org/10.1080/09593330.2018.1432698

MEERBERGEN, K.; WILLEMS, K.A.; DEWIL, R.; VAN IMPE, J.; APPELS, L.; LIEVENS, B. Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes. Journal of Bioscience and Bioengineering, v.125, n. 4, p.448-456, 2018. http://dx.doi.org/10.1016/j.jbiosc.2017.11.008

MIKKONEN, A.; YLÄRANTA, K.; TIIROLA, M.; DUTRA, L.A.L.; SALMI, P.; ROMANTSCHUK, M.; COPLEY, S.; IKÄHEIMO, J.; SINKKONEN, A. Successful aerobic bioremediation of groundwater contaminated with higher chlorinated phenols by indigenous degrader bacteria. Water Research, v.138, p.118-128, 2018. http://dx.doi.org/10.1016/j.watres.2018.03.033

MISHRA, S.; CHOWDHARY, P.; BHARAGAVA, R.N. Conventional methods for the removal of industrial pollutants, their merits and demerits. Emerging and Eco-friendly Approaches for Waste Management, p.1-31, 2018. http://dx.doi.org/10.1007/978-981-10-8669-4_1

MIŠÍK, M.; MI?IETA, K.; SOLENSKÁ, M.; MI?ÍKOVÁ, K.; PISAR?ÍKOVÁ, H.; KNASMÜLLER, S. In situ biomonitoring of the genotoxic effects of mixed industrial emissions using the Tradescantia micronucleus and pollen abortion tests with wild life plants: demonstration of the efficacy of emission controls in an eastern european city: Demonstration of the efficacy of emission controls in an eastern European city. Environmental Pollution, v.145, n.2, p.459-466, 2007. http://dx.doi.org/10.1016/j.envpol.2006.04.026

MOGHADDAM, S.S.; MOGHADDAM, M.R. Alavi; ARAMI, M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology: Optimization through response surface methodology. Journal of Hazardous Materials, v.175, n.1-3, p.651-657, 2010. http://dx.doi.org/10.1016/j.jhazmat.2009.10.058

MORIARTY, F. Ecotoxicology. Human Toxicology, v.7, n.5, p.437-441, 1988. http://dx.doi.org/10.1177/096032718800700510

NAJAFPOOR, A.A.; DAVOUDI, M.; SALMANI, E.R. Decolorization of synthetic textile wastewater using electrochemical cell divided by cellulosic separator. Journal of Environmental Health Science and Engineering, v.15, n.1, p.15-11, 2017. http://dx.doi.org/10.1186/s40201-017-0273-3

NEDER, R.T. Há política ambiental para a indústria brasileira? Revista de Administração de Empresas, v.32, n.2, p.6-13, 1992. http://dx.doi.org/10.1590/s0034-75901992000200002

OLU-AROTIOWA, O.; AJANI, A.; AREMU, M.; AGARRY, S. Bioremediation of atrazine herbicide contaminated soil using different bioremediation strategies. Journal of Applied Sciences and Environmental Management, v.23, n.1, p.99-109, 2019. http://dx.doi.org/10.4314/jasem.v23i1.16

ORIOL, R.; CLEMATIS, D.; BRILLAS, E.; CORTINA, J.L.; PANIZZA, M.; SIRÉS, I. Groundwater treatment using a solid polymer electrolyte cell with mesh electrodes. Chemelectrochem, v.6, n.4, p.1235-1243, 2019. http://dx.doi.org/10.1002/celc.201801906

OZ, U.C.; KÜÇÜKTÜRKMEN, B.; DEVRIM, B.; SAKA, O.M.; BOZKIR, A. Development and optimization of alendronate sodium loaded PLGA nanoparticles by central composite design. Macromolecular Research, v.27, n.9, p.857-866, 2019. http://dx.doi.org/10.1007/s13233-019-7119-z

PAWAR, P.R.; BHOSALE, S.M. Heavy metal toxicity, health hazards and their removal technique by natural adsorbents: a short overview. International Journal of Current Engineering And Technology, v.8, n.02, p.400-406, 2018. http://dx.doi.org/10.14741/ijcet/v.8.2.35

PENG, W.; LI, X.; SONG, J.; JIANG, W.; LIU, Y.; FAN, W. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides. Chemosphere, v.197, p.33-41, 2018.

http://dx.doi.org/10.1016/j.chemosphere.2018.01.017

PEREIRA, J.A.R. Geração de resíduos industriais e controle ambiental. Centro Tecnológico da Universidade Federal do Pará, 2002. 31p.

PERIYASAMY, A.P.; RWAHWIRE, S.; ZHAO, Y. Environmental friendly textile processing. Handbook of Ecomaterials, p.1521-1558, 2019. http://dx.doi.org/10.1007/978-3-319-68255-6_176

PHILIP, L.; RAMPRASAD, C.; KRITHIKA, D. Sustainable wastewater management through decentralized systems: case studies. Water Scarcity and Ways to Reduce the Impact, p.15-45, 2018. http://dx.doi.org/10.1007/978-3-319-75199-3_2

PHILIPPI JUNIOR, A. Controle de poluição ambiental: implantação de sistema de financiamento. São Paulo-SP. Universidade de São Paulo, 1987. 257p. Tese (Doutorado. em Saúde Pública), Universidade de São Paulo, 1987.

POPURI, A.K.; GARIMELLA, P. Heat transfer studies in a laboratory vertical riser system suitable for waste heat recovery from industrial waste exhaust gases. Chemical Engineering Communications, p.1-8, 2020. http://dx.doi.org/10.1080/00986445.2019.1708739

PORTER, S.C.; VERSEPUT, R.P.; CUNNINGHAM, C.R. Process optimization using design of experiments. Pharmaceutical Technology, v.21, n.10, p.60-71, 1997.

PRABAKAR, D.; K, S.S.; MANIMUDI, V.T.; MATHIMANI, T.; KUMAR, G.; RENE, E.R.; PUGAZHENDHI, A. Pretreatment technologies for industrial effluents: critical review on bioenergy production and environmental concerns: Critical review on bioenergy production and environmental concerns. Journal of Environmental Management, v.218, p.165-180, 2018. http://dx.doi.org/10.1016/j.jenvman.2018.03.136

PREMKUMAR, M. P.; THIRUVENGADARAVI, K. V.; KUMAR, P.S.; NANDAGOPAL, J.; SIVANESAN, S. Ecofriendly treatment strategies for wastewater containing dyes and heavy metals. Energy, Environment, And Sustainability, p.317-360, 2017. http://dx.doi.org/10.1007/978-981-10-7332-8_14

QIAO, J.; ZHANG, W. Dynamic multi-objective optimization control for wastewater treatment process. Neural Computing and Applications, v.29, n.11, p.1261-1271, 2016. http://dx.doi.org/10.1007/s00521-016-2642-8

RINCÓN, G.J.; LAMOTTA, E.J. Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation. Journal of Environmental Management, v.144, p.42-50, 2014. http://dx.doi.org/10.1016/j.jenvman.2014.05.004

RODRIGUES, C.S.D.; MADEIRA, L.M.; BOAVENTURA, R.A.R. Treatment of textile dye wastewaters using ferrous sulphate in a chemical coagulation/flocculation process. Environmental Technology, v.34, n.6, p.719-729, 2013. http://dx.doi.org/10.1080/09593330.2012.715679

RODRIGUES, M.I.; IEMMA, A.F. Planejamento de experimentos e otimização de processos: uma estratégia sequencial de planejamentos. Casa do Pão Editora, 2005. 329p.

RODRIGUEZ-CAMPOS, J.; PERALES-GARCIA, A.; HERNANDEZ-CARBALLO, J.; MARTINEZ-RABELO, F.; HERNÁNDEZ-CASTELLANOS, B.; BAROIS, I.; CONTRERAS-RAMOS, S.M. Bioremediation of soil contaminated by hydrocarbons with the combination of three technologies: bioaugmentation, phytoremediation, and vermiremediation. Journal of Soils and Sediments, v.19, n.4, p.1981-1994, 2018. http://dx.doi.org/10.1007/s11368-018-2213-y

SALAMA, E.; SAHA, S.; KURADE, M.B.; DEV, S.; CHANG, S.W.; JEON, B. Recent trends in anaerobic co-digestion: fat, oil, and grease (FOG) for enhanced biomethanation. Progress in Energy and Combustion Science, v.70, p.22-42, 2019. http://dx.doi.org/10.1016/j.pecs.2018.08.002

SANDERMANN, H. Plant metabolism of xenobiotics. Trends in Biochemical Sciences, v.17, n.2, p.82-84, 1992. http://dx.doi.org/10.1016/0968-0004(92)90507-6

SAUNDERS, J.A.; LEE, M.; DHAKAL, P.; GHANDEHARI, S.S.; WILSON, T.; BILLOR, M.Z.; UDDIN, A. Bioremediation of arsenic-contaminated groundwater by sequestration of arsenic in biogenic pyrite. Applied Geochemistry, v.96, p.233-243, 2018. http://dx.doi.org/10.1016/j.apgeochem.2018.07.007

SCARLAT, N.; FAHL, F.; DALLEMAND, J. Status and opportunities for Energy recovery from municipal solid waste in Europe. Waste and Biomass Valorization, v.10, n.9, p.2425-2444, 2018. http://dx.doi.org/10.1007/s12649-018-0297-7

SCHWARZ, E.J.; STEININGER, K.W. Implementing nature's lesson: the industrial recycling network enhancing regional development. Journal of Cleaner Production, v.5, n.1-2, p.47-56, 1997. http://dx.doi.org/10.1016/s0959-6526(97)00009-7

SINGH, J. K; RANJAN, R; PANKAJ, P. Isolation and screening of water microbes for decolourisation of textile dye waste. Current World Environment, v.11, n.1, p.296-300, 2016. http://dx.doi.org/10.12944/cwe.11.1.36

SINGLETON, I. Microbial metabolism of xenobiotics: fundamental and applied research. Journal of Chemical Technology and Biotechnology, v.59, n.1, p.9-23, 1994. http://dx.doi.org/10.1002/jctb.280590104

SKELLY, K. Water recycling. Review of Progress in Coloration and Related Topics, v.30, p.21-34, 2000.

STELLA, T.; COVINO, S.; ?VAN?AROVÁ, M.; FILIPOVÁ, A.; PETRUCCIOLI, M.; D’ANNIBALE, A.; CAJTHAML, T. Bioremediation of long-term PCB-contaminated soil by white-rot fungi. Journal of Hazardous Materials, v.324, p.701-710, 2017. http://dx.doi.org/10.1016/j.jhazmat.2016.11.044

STUART, M.; LAPWORTH, D.; CRANE, E.; HART, A. Review of risk from potential emerging contaminants in UK groundwater. Science of The Total Environment, v.416, p.1-21, 2012. http://dx.doi.org/10.1016/j.scitotenv.2011.11.072

SUBRENAT, A.S.; LE CLOIREC, P.A. Volatile organic compound (VOC) removal by adsorption onto activated carbon fiber cloth and electrothermal desorption: an industrial application. Chemical Engineering Communications, v.193, n.4, p.478-486, 2006. http://dx.doi.org/10.1080/00986440500191768

TARIQ, M.; ALI, M.; SHAH, Z. Characteristics of industrial effluents and their possible impacts on quality of underground water. Soil Environ, v.25, n.1, p.64-69, 2006.

TEH, C.Y.; BUDIMAN, P.M.; SHAK, K.P.Y.; WU, T.Y. Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, v.55, n.16, p.4363-4389, 2016. http://dx.doi.org/10.1021/acs.iecr.5b04703

TEIXEIRA, S.R.; SANTOS, G.T.A.; SOUZA, A.E.; ALESSIO, P.; SOUZA, S.A.; SOUZA, N.R. The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Applied Clay Science, v.53, n.4, p.561-565, 2011. http://dx.doi.org/10.1016/j.clay.2011.05.004

TELES, Y.V.; DE CASTRO, L.M.; SARGENTINI JUNIOR, É.; DO NASCIMENTO, A.P.; DA SILVA, H.A.; COSTA, R.S.; SOUZA, R.D.N.; DA MOTA, A.J.; PEREIRA, J.O. Potential of bacterial isolates from a stream in Manaus Amazon to bioremediate chromium-contaminated environments. Water, Air, & Soil Pollution, v.229, n.8, p.229-266, 2018. http://dx.doi.org/10.1007/s11270-018-3903-1

THAKUR, M.; MEDINTZ, I.L.; WALPER, S.A. Enzymatic bioremediation of organophosphate compounds-progress and remaining challenges. Frontiers in Bioengineering and Biotechnology, v.7, p.1-21, 2019. http://dx.doi.org/10.3389/fbioe.2019.00289

VAN LIER, J.B.; LETTINGA, G. Appropriate technologies for effective management of industrial and domestic waste waters: the decentralised approach. Water Science and Technology, v.40, n.7, p.171-183, 1999. https://doi.org/10.1016/S0273-1223(99)00599-5

VARJANI, S.; UPASANI, V.N. Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. Journal of Environmental Management, v.245, p.358-366, 2019. http://dx.doi.org/10.1016/j.jenvman.2019.05.070

VIEIRA, G.G., VARELA, M.L.R., PUTNIK, G.D., MACHADO, J.; TROJANOWSKA, J. Integrated platform for realtime control and production and productivity monitoring and analysis. Romanian Review Precision Mechanics, Optics and Mechatronics, v.2016, n.50, p.119-127, 2016.

WANG, C.; YEDILER, A.; LIENERT, D.; WANG, Z.; KETTRUP, A. Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri. Chemosphere, v.46, n.2, p.339-344, 2002. http://dx.doi.org/10.1016/s0045 6535(01)00086-8

WU, Y.; JING, X.; GAO, C.; HUANG, Q.; CAI, P. Recent advances in microbial electrochemical system for soil bioremediation. Chemosphere, v.211, p.156-163, 2018. http://dx.doi.org/10.1016/j.chemosphere.2018.07.089

YOUNG, C.E.F.; LUSTOSA, M.C.J. Meio ambiente e competitividade na indústria brasileira. Revista de Economia Contemporânea, v.5, n.3, 2001.

ZHAN, B.J.; POON, C.S. Study on feasibility of reutilizing textile effluent sludge for producing concrete blocks. Journal of Cleaner Production, v.101, p.174-179, 2015. http://dx.doi.org/10.1016/j.jclepro.2015.03.083

ZHANG, L.; LOH, K.; ZHANG, J. Enhanced biogas production from anaerobic digestion of solid organic wastes: current status and prospects. Bioresource Technology Reports, v.5, p.280-296, 2019. http://dx.doi.org/10.1016/j.biteb.2018.07.005

Downloads

Publicado

2021-02-24

Edição

Seção

Revisão

Como Citar

Poluentes industriais: Conceitos e tendências de tratamento. (2021). Revista De Ciências Agro-Ambientais, 18(2), 124-135. https://doi.org/10.5327/rcaa.v18i2.4259

Artigos Semelhantes

1-10 de 41

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.