Soil and nutrient losses by runoff from farmlands in Southern Brazil

Autores

DOI:

https://doi.org/10.30681/rcaa.v19i1.4967

Palavras-chave:

erosão do solo, custo da erosão, redução da fertilidade, plantio direto, conservação do solo, manejo do solo

Resumo

 A erosão acelerada do solo é uma importante causa da sua degradação, levando a perdas de solo e nutrientes, aumentando os custos de produção e causando enormes danos ao ambiente. Nosso objetivo foi quantificar as perdas de solo e nutrientes por escoamento superficial e os custos da erosão em sete propriedades rurais (seis em plantio direto e uma em plantio convencional) no sul do Brasil. As perdas de solo e nutrientes por escoamento superficial foram medidas entre 31 de agosto de 2009 e 19 de novembro de 2010. O custo para reposição, através de fertilizantes minerais, dos nutrientes escoados superficialmente, dentro do período de 
avaliação, também foi quantificado. O total de solo erodido variou de 0,8 a 3,1 t ha-1, com as maiores e menores taxas de erosão ocorrendo, respectivamente, nas propriedades em plantio convencional e plantio direto. O silte e a argila compõem mais de 50% do solo erodido, que também apresentou alta concentração de nutrientes. A concentração de nutrientes no solo escoado superficialmente foi maior do que na camada de 0 a 0,05 m do solo nas propriedades rurais. O custo estimado de fertilizantes para repor os nutrientes disponíveis P, K, Ca, Mg, e S foi de US$ 0,75 por hectare (menor taxa de erosão) e US$ 1,88 por hectare (maior taxa de erosão).

Referências

ALFSEN, K.H.; De FRANCO, M.A.; GLOMSRØD, S.; JOHNSEN, T. The cost of soil erosion in Nicarágua. Ecological Economics, v.16, n.2, p.129-145, 1996. https://doi.org/10.1016/0921-8009(95)00083-6

AMPOFO, E.A.; MUNI, R.K.; BONSU, M. Estimation of soil losses within plots as affected by different agricultural land management. Hydrological Sciences Journal, v.47, n.6, p.957-967, 2002. https://doi.org/10.1080/02626660209493003

BAUMHARDT, R.L.; STEWART, B.A.; SAINJU, U.M. North american soil degradation: Processes, practices, and mitigating strategies. Sustainability, v.7, p.2936-2960, 2015.

BLAKE, G.R.; HARTGE, K.H. Bulk density. In: KLUTE, A. Methods of soil analysis: Physical and mineralogical methods. 2nd. Madison: American Society of Agronomy, Soil Science Society of America, 1986. p.363-375.

BRASIL. MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO. Instrução normativa nº 39, de 8 de agosto de 2018.

BUCUR, D.; JITAREANU, G.; AILINCAI, C.; TSADILAS, C.; AILINCAI, D.; MERCUS, A. Influence of soil erosion on water, soil, humus and nutrient losses in different crop systems in the Moldavian Plateau, Romania. Journal of Food, Agriculture and Environment, v.5, n.2, p.261-264, 2007.

DISSART, J.; BAKER, L.; THOMASSIN, P.J. The economics of erosion and sustainable practices: the case of the Saint-Espirit watershed. Canadian Journal of Agricultural Economics, v.48, n.2, p.103-122, 2000. https://doi.org/10.1111/j.1744-7976.2000.tb00269.x

DURÁN, Z.V.H.; FRANCIA, M.J.R.; GARCIA, T.I.; RODRÍGUEZ, P.C.R.; MARTÍNEZ, R.A.; CUADROS, T.S. Runoff and sediment yield from a small watershed in southeastern Spain (Lanjarón): implications for water quality. Hydrological Sciences Journal, v.57, n.8, p.1610–1625, 2012. https://doi.org/10.1080/02626667.2012.726994

GALVÃO, T.C.B.; SCHULZE, D.G. Mineralogical properties of a collapsible Lateritic soil from Minas Gerais, Brazil. Soil Science Society of America Journal, v.60, n.6, p.1969-1978, 1996. https://doi.org/10.2136/sssaj1996.03615995006000060050x

GEE, G.W.; OR, D. Particle-size analysis. In: DANE, J.H., TOPP, C. (Co-eds.). Methods of soil analysis. Part IV: Physical methods, 5nd ed. Soil Science Society of America, Madison, p.255-293, 2002.

GLOBAL SOIL PARTNERSHIP - GSP. Global soil partnership endorses guidelines on sustainable soil management. 2016. Available on: http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/

GUADAGNIN, J.C.; BERTOL, I.; CASSOL, P.C.; AMARAL, A.J. Soil, water and nitrogen losses through erosion under different tillage systems. Brazilian Journal of Soil Science, v.29, n.2, p.277-286, 2005. (in Portuguese with English abstract)

HEATHCOTE, A.J.; FILSTRUO, C.T.; DOWNING, J.A. Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts. Plos One, v.8, n.1, p.1-4, 2013. https://doi.org/10.1371/journal.pone.0053554

HUSSEIN, M.H.; OTHMAN, A.K. Soil and water losses in a low intensity rainfall region in Iraq. Hydrological Sciences Journal, v.33, n.3, p.257-267, 1988. https://doi.org/10.1080/02626668809491247

HUSSEIN, M.H.; HUSSEIN, A.J.; AWAD, M.M.. Phosphorus and nitrogen losses associated with runoff and erosion on an Aridisol in northern Iraq. Hydrological Sciences Journal, v.44, n.5, p.657-664, 1999. https://doi.org/10.1080/02626669909492265

KAUFMANN, V.; PINHEIRO, A.; CASTRO, N.M.R.; FERNANDES, C.V.S.; MERTEN, G. Runoff from soils under different management and simulated rainfall regimes in southern Brazil. Hydrological Sciences Journal, v.59, n.12, p.2173-2185, 2014. https://doi.org/10.1080/02626667.2014.945454

KEMPER, W.D.; CHEPIL, W.S. Size distribution of aggregates. In: BLACK, C.A. Methods of soil analysis. Part 1. Madison, Wisconsin. ASA, 1965. p.499-510.

KUNZE, G.W.; DIXON, J.B. Pretreatment for mineralogical analysis. In: KLUTE, A. (Ed.). Methods of soil analysis. Part I: Physical and mineralogical methods. 2nd ed. American Society of Agronomy, Soil Science Society of America, Madison, 1986. p.91-100.

LAL, R. Soil erosion and sediment transport research in tropical Africa. Hydrological Sciences Journal, v.30, n.2, p.239-256, 1985. https://doi.org/10.1080/02626668509490987

LIBARDI, P.L. Dinâmica da água no solo. São Paulo: Editora da Universidade de São Paulo, 2005. 335p.

MARTÍNEZ-CASASNOVAS, J.A.; RAMOS, M.C. The cost of soil erosion in vineyard fields in the Penedès-Anoia Region (NE Spain). Catena, v.68, n.2-3, p.194-199, 2006. https://doi.org/10.1016/j.catena.2006.04.007

MORAIS, L.F.B.; COGO, N.P. Slope-length limit for different forms of residue management under no-till in a Ultisol in the Depressão Central region of Rio Grande do Sul, Brazil. Brazilian Journal of Soil Science, v.25, n.4, p.1041-1051, 2001. (in Portuguese with English abstract). https://doi.org/10.1590/S0100-06832001000400026

NATIONAL RESOURCE CONSERVATION SERVICE-NRCS/UNITED STATES DEPARTMENT OF AGRICULTURE-USDA. Soil texture calculator. Available on: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/?cid=nrcs142p2_054167. Access: Oct. 29, 2020.

NUNES, M.R.; KARLEN, D.L; VEUM, K.S.; MOORMAN, T.B.; CAMBARDELLA, C.A. Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma, v.369, 114335, 2020. https://doi.org/10.1016/j.geoderma.2020.114335

NUNES, M.R.; VAN ES, H.M.; SCHINDELBECK, R.; RISTOW, A.J.; RYAN, M. No-till and cropping system diversification improve soil health and crop yield. Geoderma, v.328, p.30-43, 2018. https://doi.org/10.1016/j.geoderma.2018.04.031

ONESIMUS, S.; KIMARO, D.; KASENGE, V.; ISABIRYE, M.; MAKHOSI, P. Soil and nutrient losses in banana-based cropping systems of the Mount Elgon hillsides of Uganda: Economic implications. International Journal of Agricultural Sciences, v.2, n.9, p.256-262, 2012.

PIMENTEL, D.; KOUNANG, N. Ecology of soil erosion in ecosystems. Ecosystems, v.1, p.416-426, 1998. https://doi.org/10.1007/s100219900035

PIMENTEL, D.; HARVEY, C.; RESOSUDARMO, P.; SINCLAIR, K.; KURZ, D.; MCNAIR, M.; CRIST, S.; SHPRITZ, L.; FITTON, L.; SAFFOURI, R.; BLAIR, R. Environmental and economic costs of soil erosion and conservation benefits. Science, v.267, n.5201, p.1117-1122, 1995. https://doi.org/10.1126/science.267.5201.1117

PINHEIRO-DICK, D.; SCHWERTMANN, U. Microaggregates from Oxisols and Inceptisols: dispersion through selective dissolutions and physicochemical treatments. Geoderma, v.74, n.1-2, p.49-63, 1996. https://doi.org/10.1016/S0016-7061(96)00047-X

PUTTHACHAROEN, S.; HOWELER, R.H.; JANTAWAT, S.; VICHUKIT, V. Nutrient uptake and soil erosion losses in cassava and six other crops in a Psamment in eastern Thailand. Field Crops Research, v.57, n.1, p.113-126, 1998. https://doi.org/10.1016/S0378-4290(97)00119-6

RICHARDSON, C.W.; KING, K.W. Erosion and nutrient losses from zero tillage on a clay soil. Journal of Agricultural Engineering Research, v.61, n.2, p.81-86, 1995. https://doi.org/10.1006/jaer.1995.1034

ROSA, J.A.; RODRIGUES S. Agenda Erechim 2018: planejamento estratégico, construindo a cidade que queremos. Graffoluz, Erechim, 2008.

SANTOS, H.G.; JACOMINE, P.K.T.; ANJOS, L.H.; OLIVEIRA, V.A.; LUMBRERAS, J.F.; COELHO, M.R.; ALMEIDA, J.A.; ARAUJO FILHO, J.C.; OLIVEIRA, J.B.; CUNHA, T.J.F. Sistema brasileiro de classificação de solos. 5. ed. rev. e ampl. Brasília, DF: Embrapa, 2018. 356p. (E-book : il. color.)

SCHICK, J.; BERTOL, I.; BALBINOT JÚNIOR, A.A.; BATISTELA, O. Soil erosion of a clayey Inceptisol under different crop and tillage systems: II. Nutrient and organic carbon losses. Brazilian Journal of Soil Science, v.24, n.2, p.437-447, 2000. (in Portuguese with English abstract). https://doi.org/10.1590/S0100-06832000000200020

SELBY, M.J. An investigation into causes of runoff from a Catchment of pumice lithology, in New Zealand. Hydrological Sciences Journal, v.18, n.3, p.255-280, 1973. https://doi.org/10.1080/02626667309494036

SILVA, A.M.; ALVARES, C.A.; WATANABE, C.H. Natural potential for erosion for brazilian territory. In: GODONE, D. (Ed.). Soil erosion studies. InTech, 2011. Available on: https://cdn.intechopen.com/pdfs/23108/InTech-Natural_potential_for_erosion_for_brazilian_territory.pdf. Access: Oct. 29, 2020.

SOCIEDADE BRASILEIRA DE CIÊNCIA DO SOLO. COMISSÃO DE QUÍMICA E FERTILIDADE DO SOLO. Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina. 10 ed. Porto Alegre, 2004. 400p.

SOIL SURVEY STAFF. Keys to Soil Taxonomy. 12th ed. USDA-Natural Resources Conservation Service, Washington, DC, 2014.

SUZUKI, L.E.A.S.; REICHERT, J.M.; ALBUQUERQUE, J.A.; REINERT, D.J.; KAISER, D.R. Dispersion and flocculation of Vertisols, Alfisols and Oxisols in Southern Brazil. Geoderma Regional, v.5, p.64-70, 2015. https://doi.org/10.1016/j.geodrs.2015.03.005

TEDESCO, M.J.; GIANELLO, C.; BISSANI, C.A.; VOLKWEISS, S.J. Análises de solo, plantas e outros materiais. 2 ed. Departamento de Solos, UFRGS, Porto Alegre, 1995. 174p. (Boletim Técnico 5)

TEIXEIRA, P.C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W.G. (Editores Técnicos). Manual de métodos de análise de solo. 3. ed. rev. e ampl. Brasília, DF: Embrapa, 2017. 574p. il. color.

TELLES, T.S.; GUIMARÃES, M.F.; DECHEN, S.C.F. The costs of soil erosion. Brazilian Journal of Soil Science, v.35, n.2, p.287-298, 2011. https://doi.org/10.1590/S0100-06832011000200001

TROEH, F.R.; HOBBS, J.Á.; DONAHUE, R.L. Soil and water conservation for productivity and environmental protection. Prentice-Hall, United States of America, 1980.

WALLING, D.E. The impact of global change on erosion and sediment transport by rivers: Current progress and future challenges. UNESCO, 2009. Available on: https://unesdoc.unesco.org/ark:/48223/pf0000185078_eng. Access: Oct. 29, 2020.

YODER, R.E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Journal of the American Society of Agronomy, v.28, n.5, p.337-351, 1936. https://doi.org/10.2134/agronj1936.00021962002800050001x

ZHOU, X.; HELMERS, M.J.; AL-KAISI, M.; HANNA, H.M. Cost-effectiveness and cost-benefit analysis of conservation management practices for sediment reduction in an Iowa agricultural watershed. Journal of Soil and Water Conservation, v.64, n.5, p.314-323, 2009. https://doi.org/10.2489/jswc.64.5.314

Downloads

Publicado

09/12/2021

Como Citar

Suzuki, L. E. A. S., Bordin, S. S., Matieski, T., Rostirolla, P., Strieder, G., & Nunes, M. R. (2021). Soil and nutrient losses by runoff from farmlands in Southern Brazil. Revista De Ciências Agroambientais, 19(1), 1–15. https://doi.org/10.30681/rcaa.v19i1.4967

Edição

Seção

Agronomia