COMPARAÇÃO DA CAPACIDADE PREDITIVA DE MODELOS ARIMA PARA O CONSUMO DE ENERGIA ELÉTRICA NO BRASIL

Conteúdo do artigo principal

Raphael Silveira Amaro
Paulo Sergio Ceretta
Daniel Arruda Coronel
Reisoli Bender Filho
Michele Gendelsky de Oliveira

Resumo

Devido ao fato de que a energia elétrica, em grandes quantidades, não pode ser armazenada de forma viável e eficiente, torna-se extremamente importante mensurar de forma precisa e confiável a sua demanda futura. Deste modo, o objetivo desta pesquisa é comparar a capacidade preditiva de modelos Autoregressive Integrated Moving Average para a série de demanda de energia elétrica de médio prazo do Brasil. Para que tal objetivo seja alcançado, realizam-se previsões da demanda de energia elétrica mensal para 50 passos à frente, em cada modelo concorrente, com reajuste dos parâmetros a cada passo. Como resultado, as evidências empíricas encontradas demonstraram que o melhor modelo para realizar previsões eficientes e confiáveis para a série é um processo com dois vetores autorregressivos, um vetor de média móvel e ordem de integração unitária.

Detalhes do artigo

Como Citar
COMPARAÇÃO DA CAPACIDADE PREDITIVA DE MODELOS ARIMA PARA O CONSUMO DE ENERGIA ELÉTRICA NO BRASIL. (2017). Revista UNEMAT De Contabilidade, 6(11). https://doi.org/10.30681/ruc.v6i11.1848
Seção
Artigos
Biografia do Autor

Raphael Silveira Amaro, Universidade Federal de Santa Maria - UFSM

Mestre em Administração pela Universidade Federal de Santa Maria (UFSM). Especialista em Gestão Financeira, Controladoria e Auditoria pela Fundação Getúlio Vargas (FGV). Graduado em Economia pela Universidade Federal de Santa Maria (UFSM). 

Paulo Sergio Ceretta, Universidade Federal de Santa Maria - UFSM

Doutor em Engenharia de Produção pela Universidade Federal de Santa Catarina (UFSC). Professor associado do departamento de Ciências Administrativas da Universidade Federal de Santa Maria (UFSM).

Daniel Arruda Coronel, Universidade Federal de Santa Maria - UFSM

Doutor em Economia Aplicada pela Universidade Federal de Viçosa (UFV). Professor associado do departamento de Ciências Administrativas da Universidade Federal de Santa Maria (UFSM).

Reisoli Bender Filho, Universidade Federal de Santa Maria - UFSM

Doutor em Economia Aplicada pela Universidade Federal de Viçosa (UFV). Professor associado do departamento de Ciências Administrativas da Universidade Federal de Santa Maria (UFSM).

Michele Gendelsky de Oliveira, Centro Universitário Franciscano - UNIFRA

Graduação em Ciências Contábeis.

Como Citar

COMPARAÇÃO DA CAPACIDADE PREDITIVA DE MODELOS ARIMA PARA O CONSUMO DE ENERGIA ELÉTRICA NO BRASIL. (2017). Revista UNEMAT De Contabilidade, 6(11). https://doi.org/10.30681/ruc.v6i11.1848

Referências

ANDREWS, D. W. K., Tests for parameter instability and structural change with unknown change point. Econometrica, v. 61, n. 4, p. 821-856, July 1993.

ANDREWS, D. W. K.; PLOBERGER, W., Optimal tests when a nuisance parameter is present only under the alternative. Econometrica, v. 62, n. 6, p. 1383-1414, Nov. 1994.

BAUER, P.; HACKL, P., The use of Mosums for quality control. Technometrics, v. 20, n. 4, p. 431-436, Nov. 1978.

BROCKWELL, P. J.; DAVIS, R. A., Introduction to Time Series and Forecasting. 2. ed., Springer-Verlang, 2002.

CHAVEZ, S. G.; BERNAT, J. X.; COALLA, H. L., Forecasting of energy production and consumption in Asturias (northern Spain). Energy, v. 24, n. 3, p. 183-198, Mar. 1999.

DICKEY, D. A.; W.A. FULLER., Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, v. 74, p. 427-431, 1979.

EDIGER, V. ?.; AKAR, S., ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy, v. 35, n. 3, p. 1701-1708, Mar. 2007.

GODINHO, T. S.; MILANI, L. L.; PEREIRA, G. A., Análise e previsão do consumo de energia elétrica da região sudeste usando a metodologia de Box e Jenkins. Anais do XII Encontro Mineiro de Estatística - MGEST 2013. Uberlândia - 05 e 06 de Setembro de 2013.

Ipea - Instituto de Pesquisa Econômica Aplicada, 2015. Disponível em: < http://www.ipea.gov.br/>. Acesso em: Mai. 2015.

KANDANANOND, K., Forecasting electricity demand in thailand with an artificial neural network approach. Energies, v. 8, n. 4, p. 1246-1257, Aug. 2011.

KAVASSERI, R. G.; SEETHARAMAN, K., Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy, v. 34, n. 5, p. 1388-1393, May. 2009.

KHEIRKHAH, A.; AZADEH, A.; SABERI, M.; AZARON, A.; SHAKOURI, H., Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis. Computers & Industrial Engineering, v. 64, n. 1, p. 425-441, Jan. 2013.

KWIATKOWSKI, D.; P. C. B. PHILLIPS; P. SCHMIDT; Y. SHIN. Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root. Journal of Econometrics, v. 54, n. 1-3, p. 159-178, Dec. 1992.

PAGE, E. S., Continuous Inspection Schemes. Biometrika, v. 41, n. 1-2, p. 100-115, 1954.

PASSOS, F. F., Análise temporal da série de consumo residencial de energia elétrica no Brasil no período de 1963 a 2012. Monografia (Bacharel em Ciências Econômicas) - Instituto de Ciências Sociais Aplicadas. Universidade Federal de Alfenas, Minas Gerais, Brasil, 2015.

ROMERA, E. G.; MORÁN, M. A. J.; FERNÁNDEZ, D. C., Monthly electric energy demand forecasting with neural networks and Fourier series. Energy Conversion and Management, v. 49, n. 11, p. 3135-3142, Nov. 2008.

SOUZA, D. L. O.; RODRIGUES, M.; REIS, D. R., Crise energética 2001: providencial e reflexiva. Revista Educação e Tecnologia, v. 5, n. 8, p. 27-40, Set. 2004.

TAYLOR, J. W.; MENEZES, L. M.; MCSHARRY, P. E., A comparison of univariate methods for forecasting electricity demand up to a day ahead. International Journal of Forecasting, v. 22, n. 1, p. 1-16, Jan.–Mar. 2006.

UNSIHUAY, V. C.; ZAMBRONI, A. C.; MARANGON, L. J. W.; BALESTRASSI, P. P., Electricity demand and spot price forecasting using evolutionary computation combined with chaotic nonlinear dynamic model. International Journal of Electrical Power & Energy Systems, v. 32, n. 2, p. 108-116, Feb. 2010.

VILAR, J. M.; CAO, R.; ANEIROS, G., Forecasting next-day electricity demand and price using nonparametric functional methods. International Journal of Electrical Power & Energy Systems, v. 39, n. 1, p. 48-55, July 2012.

WENNSTRO?M, A. Volatility Forecasting Performance: Evaluation of GARCH type volatility models on Nordic equity índices. 2014. 61 p. Dissertação (Master of Science) - Department of Mathematics. Royal Institute of Technology (KTH), Stockholm, Sweden, 2014.

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>