The influence of poultry manure extract on okra growth and yield
DOI:
https://doi.org/10.30681/rcaa.v23i2.14088Palabras clave:
climate resilience, okra varieties, sustainable agriculture, tropical soilsResumen
Okra is important for its nutritional value, economic significance, and adaptability to diverse farming systems. However, low soil fertility in tropical soils results in poor okra yields, and using poultry manure raises environmental concerns. Therefore, exploring poultry manure extract (PME) could be a sustainable practice to ensure good yield. The objective was to determine okra's response to PME. The experiment, conducted in 2022 and 2023 used a 2×6 factorial design involving two okra varieties (NHAe47-4 and LD88) and six fertilizer treatments [0 (Control: T1), 840 L/ha (T2), 1680 L/ha (T3), and 2520 L/ha PME (T4), 60 kg N/ha poultry manure (T5), and 60 kg N/ha NPK 15:15:15 (T6)]. A randomized complete block design with six replicates and plant spacing of 50×30 cm was used. Growth and yield data were analyzed using ANOVA. Results indicated NHAe47-4 had significantly lower height, pod length, and fruit yield, but higher stem diameter, number of leaves, and leaf area, compared to LD88. Applying T4 treatment significantly increased the growth and yield of okra compared to lower levels and control, although T5 and T6 were better. In 2022 and 2023, fresh shoot weights were highest in NHAe47-4×T6 (5151.07 and 5080.56 kg/ha), and fruit yields in LD88×T6 (45408.34 and 45617.60 kg/ha), while NHAe47-4×T4 had 3554.17 and 3527.78 kg/ha, and LD88×T4 had 27269.91 and 27327.78 kg/ha, respectively. Though T6 and T5 optimize the vegetative and reproductive performances in okra, applying 2520 L/ha of poultry manure extract was considered an environmentally friendly alternative for sustainable LD88 okra production.
Descargas
Referencias
ABDULMALIQ, S.Y.; ABAYOMI, Y.A.; ADULOJU, M.O.; OLUGBEMI, O. Effects of curing period of livestock droppings on the growth and yield of okra (Abelmoschus esculentus L.) Varieties. International Journal of Agronomy, v.2016, p.1-7, 2016. http://dx.doi.org/10.1155/2016/3513954.
ADESIDA, O.A, SMART, M.O, BAMIGBOYE, T.O, ADEDOKUN, T. A.; ODEWALE, M.O. Effect of liquid organic manure and staking methods on the growth and yield of cucumber (Cucumis sativus L.). Journal of Research in Forestry, Wildlife and Environment, v.12, n.2, p.148-155, 2020. https://www.ajol.info/index.php/jrfwe/article/view/198281.
AJAYI, E.O.; OKONJI, C.J.; AYANLOLA, O.T.; OLOFINTOYE T.A.J.; OYELOWO, D.O. Improving the growth and yield of okra by intercropping with varying populations of legumes. Journal of Agricultural Sciences (Belgrade), v.65, n.3, p.213-224, 2020. https://doi.org/10.2298/JAS2003213A.
AL-HUSSAINY, E.J.; MANEA, A.I. Effect of planting distance and organic fertilization on growth and yield of Broccoli (Brassica oleracea var. Italica. Euphrates Journal of Agriculture Science, v.11, n.4, p.13-21, 2019.
AL-JAF, I.H.M.; ALALWANI, A.K.; AL-KUBISSI, KH.Y.KH. Effect of spraying organic and biological extracts on some vegetative growth characteristics and yield of two cucumber varieties. Anbar Journal of Agricultural Sciences, v.23, n.1, p.185-196, 2025. DOI: 10.32649/ajas.2025.186593
ASAMANI, E.K.; MAALEKUU, B.K. Effect of processing on nutritional value and microbial characteristics of okra (Abelmoschus esculentus. Asian Journal of Agricultural and Horticultural Research, v.10, n.3, p.80-92, 2023. DOI: 10.9734/AJAHR/2023/v10i3234
ASANTE, J.; OPOKU, V.A.; HYGIENUS, G.; ANDERSEN, M.N.; ASARE, P.A.; ADU, M.O. Photosynthetic efficiency and water retention in okra (Abelmoschus esculentus) contribute to tolerance to single and combined effects of drought and heat stress. Scientific Reports, v.14, n.1, p.1-13, 2024. https://doi.org/10.1038/s41598-024-79178-5
AYODELE, O.J.; SHITTU, O.S. Consideration of costs and returns to nitrogen fertilization in okra production. Elixir Agriculture, v.57 p.14412-14416, 2013.
BABAJIDE, P.A.; AKINRINOLA, T.B.; OYEYIOLA, Y.B.; OKORO-ROBINSON, M.O.; SALAMI, T.B. Performance of Maize (Zea mays) Grown on mildly acidic low fertile soil as affected by selected organic-based soil amendments and synthetic fertilizer. International Journal of Research – GRANTHAALAYAH v.6, n.9, p.385-394, 2018. DOI: 10.5281/zenodo.1451878
BADAMASI, M.M.; IBRAHIM, H.; ABDULLAHI B.; SALAUDEEN, T.M. Effect of nitrogen rates on growth, fruit and seed yield of okra (Abelmoschus esculentus L. Moench. International Journal of Agriculture, Environment and Bioresearch, v.08, n.01, p.30, 2023. https://doi.org/10.35410/IJAEB.2023.5797
BAILEY-SERRES, J.; PARKER, J.E.; AINSWORTH, E.A.; OLDROYD, G.E.; SCHROEDER, J.I. Genetic strategies for improving crop yields. Nature, v.575, n.7781, p.109-118, 2019. https://doi.org/10.1038/s41586-019-1679-0
BAMBORIYA, S.D.; BANA, R.S., KURI, B.R.; KUMAR, V.; BAMBORIYA S.D.; MEENA R.P. Achieving higher production from low inputs using synergistic crop interactions under maize-based polyculture systems. Environmental Sustainability, v.5, p.145-159, 2022. https://doi.org/10.1007/s42398-022-00228-7
BECK, H.; ZIMMERMANN, N.; MCVICAR, T.R.; VERGOPOLAN, N.; BERG, A.; WOOD, E.F. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Scientific Data, v.5, p.180214, 2018. https://doi.org/10.1038/sdata.2018.214
BEDEKE, S.B. Climate change vulnerability and adaptation of crop producers in sub-Saharan Africa: a review on concepts, approaches and methods. Environment, Development and Sustainability, v.25, v.2, p.1017-1051. 2023. https://doi.org/10.1007/s10668-022-2118-8
BRANDENBERGER, L.; ROBERTS, W.; ZHANG, H. Soil test interpretation for vegetables. Oklahoma Cooperative Extension Fact Sheets. HLA-6036, 2015. 4p. https://kerrcenter.com/wp-content/uploads/2014/02/OSUSoilTestInterpretations.pdf
BRAY, R.H.; KURTZ, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Science, v.59, p.39-48, 1945. http://dx.doi.org/10.1097/00010694-194501000-00006
BREMNER, J.M.; MULVANEY, C.S. Total Nitrogen in methods of soil Analysis Part 2. In: PAGE et al.. Methods of Soil Analysis. American Society of Agronomy, Madison W. 1982. 595-624p.
CHAUDHARI, S.; UPADHYAY, A.; KULSHRESHTHA, S. Influence of Organic Amendments on Soil Properties, Microflora and Plant Growth. In: LICHTFOUSE, E. (eds). Sustainable Agriculture Reviews v.52. Springer, Cham. 2021. 147-19p1, https://doi.org/10.1007/978-3-030-73245-5_5
EJEDEGBA, E.O. Advancing green energy transitions with eco-friendly fertilizer solutions supporting agricultural sustainability. International Research Journal of Modernization in Engineering Technology and Science, v.6, n.12, p.2582-5208, 2024. http://dx.doi.org/10.56726/IRJMETS65313
EL-HAMDI, K.; MOSA, A.; EL-SHAZLY, M.; HASHISH, N. Response of cucumber (Cucumis sativus L.) to various organic and bio fertilization treatments under an organig farming system. Journal of Soil Sciences and Agricultural Engineering, v.8, n.5, p.189-194, 2017. https://dx.doi.org/10.21608/jssae.2017.37249
ESHIET A.J.; BRISIBE E.A. Morphological characterization and yield traits analysis in some selected varieties of okra (Abelmoschus esculentus L. Moench. Advances in Crop Science and Technology, v.3, n.5. p.1000197, 2015. http://dx.doi.org/10.4172/2329-8863.1000197
FAO. 2021. Food and Agriculture Organization of the United Nations. The State of Food and Agriculture, 2021. 152p. https://www.fao.org/3/cb4476en/cb4476en.pdf
GRŽINIĆ, G.; PIOTROWICZ-CIEŚLAK, A.; KLIMKOWICZ-PAWLAS, A.; GÓRNY, R. L.; ŁAWNICZEK-WAŁCZYK, A.; PIECHOWICZ, L.; OLKOWSKA, E.; POTRYKUS, M.; TANKIEWICZ, M.; KRUPKA, M.; SIEBIELEC, G.; WOLSKA, L. Intensive poultry farming: A review of the impact on the environment and human health. Science of The Total Environment, v.858, p.160014. 2023. https://doi.org/10.1016/j.scitotenv.2022.160014
HARIHARAN, G. Sustainable and resilient agriculture during and after Pandemic. In: SHELAT, K.; PATHAK, A.; MBUYA, O.; ACHARYA, S. (eds.). ATMANIRBHAR-Self Reliant and Climate Smart Farmers, p.59-91, 2020. https://nccsdindia.org/images/pdf/Aatmanirbhar-Self-Relaient%20-Book-2020-Final.pdf#page=75
IBIRONKE, H.O.; AKINRINOLA, T.B. The influence of poultry manure application on eggplant (Solanum aethiopicum L.) Tolerance to weed interference. Agricultural Development, v.10, n.4 p.72-79, 2025. https://doi.org/10.55220/25766740.v10i4.393
KOME, G.K.; ENANG, R.K.; TABI, F.O.; YERIMA, B.P.K. Influence of clay minerals on some soil fertility attributes: a review. Open Journal of Soil Science, v.9, n.9, p.155-188, 2019. https://doi.org/10.4236/ojss.2019.99010
KOREDE, RA.; SALAWU, OI.; IBIRONKE, H.O. Sustainable Soil Management: A Challenge for Sustainable Agriculture in Tropical Regions. New York Science Journal, v.18, n.4, p.21-31, 2025. http://www.dx.doi.org/10.7537/marsnys180425.03
MAITI, R.K.; SINGH, V.P. A review on recent research in okra (Abelmoschus esculentus L. Farming and Management, v.6, n.2, p.77-107, 2021. http://dx.doi.org/10.31830/2456-8724.2021.010
MAKINDE, E.A.; ADEYEMI, O.R.; ODEYEMI, O.M.; SALAU, A.W.; ABIODUN, O.L. Planting density on weed suppression and yield of okra. International Journal of Vegetable Science, v.27, n.3, p.260-267, 2020. https://doi.org/10.1080/19315260.2020.1777495
MASSRIE, K.D. Constraints and opportunities on okra (Abelmoschus esculentus) production in Ethiopia: A review. Frontiers in Sustainable Food Systems, v.9, p.1546995, 2025. https://doi.org/10.3389/fsufs.2025.1546995
MESCHEDE, C. Sustainable development goals in scientific literature: A bibliometric overview at the meta-level. Sustainability, v.12, n.11, p.4461, 2020. https://doi.org/10.3390/su12114461
MIHOUB, A.; NAEEM, A.; AMIN, A.E.E.A.Z.; JAMAL, A.; SAEED, M. F. Pigeon manure tea improves phosphorus availability and wheat growth through decreasing P adsorption in a calcareous sandy soil. Communications in Soil Science and Plant Analysis, v.53, n.19, p.2596-2607, 2022. https://doi.org/10.1080/00103624.2022.2072859
MSIBI, B.M.; MUKABWE, W.O.; MANYATSI, A.M.; MHAZO, N.; MASARIRAMBI, M.T. Effects of liquid manure on growth and yield of spinach (Beta vulgaris VarCicla) in a Sub-tropical Environment in Swaziland. Asian Journal of Agricultural Sciences, v.6, n.2, p.40-47. 2014. http://dx.doi.org/10.19026/ajas.6.5301
MUSA, U.T.; USMAN, T.H. Leaf area determination for maize (Zea mays L), okra (Abelmoschus esculentus L) and cowpea (Vigna unguiculata L) crops using linear measurements. Biology, Agriculture and Healthcare, v.6, n.4, p.90-102. 2016. https://core.ac.uk/reader/234661910
NELSON, D.W.; SUMMER, L.E. Total carbon, organic carbon and organic matter. In: A.L.PAGE (ed.). Method of soil analysis, part 2. Agronomy monograph, No.9 AMm soil Agron. Madison, W.I. p.539-579, 1982.
OKALEBO, J.R.; GATHUA, K.W.; WOOMER, P.L. Laboratory Methods for Soil and Plant Analysis: A Working Manual. TSBF, Nairobi.2002.
OKOCHA, P. I.; CHINATU, L. N. Evaluation of okra cultivars and breeding lines for agronomic traits in Umudike in southeastern Nigeria. Global Journal of Agricultural Sciences, v.7, n.1, p.11-15, 2008. http://dx.doi.org/10.4314/gjass.v7i1.2351
OLUGBEMI, P.W.; AKINRINOLA, T.B. Response of dry season okra [Abelmorchus esculentus (L.) Moench] to timing of fertilizer application on sandy-loam soil. International Journal of Scientific Innovations, v.8, n.1, p.133-141, 2020. http://www.irdionline.org/panafrican/scientific/article_v1/RESPONSE%20OF%20DRY%20SEASON%20OKRA.pdf
OMOLADE, E.F.; AKINBILE, O.O.; ELUMALERO. G.O.; DAMA, A.Z.; OMOJOLA, E.T.; AKANBI, L.O.; ADESINA, O.M. EBIRERI, M.U. Assessment of growth and yields components of three improved varieties of okra (Abelmoschus esculentus (L.) Moench. Open Journal of Agricultural Science, v.5, n.2, p.23-30, 2024.
PAVITHIRA, E.; HITINAYAKE, G. A review on organic liquid fertilizers and their potential impacts on the growth and yield of crops. Journal of Tropical Environment, v.2, n.1, p.75-88. 2022. http://repository.rjt.ac.lk/handle/123456789/5004
PEIRIS, P.U.S.; WEERAKKODY, W.A.P. Effect of organic based liquid fertilizers on growth performance of leaf lettuce (Lactuca Sativa L.). International Conference on Agricultural, Ecological and Medical Sciences (AEMS-2015) April 7-8, 2015 Phuket (Thailand) p.39-41, 2015. http://dx.doi.org/10.15242/IICBE.C0415010
RAFIQ, M.; GUO, M.; SHOAIB, A.; YANG, J.; FAN, S.; XIAO, H.; CHENG, C. Unraveling the hormonal and molecular mechanisms shaping fruit morphology in plants. Plants, v.14, n.6, p.974. 2025. https://doi.org/10.3390/plants14060974
RAO, N.K.S.; LAXMAN, R.H.; SHIVASHANKARA, K.S. Physiological and Morphological Responses of Horticultural Crops to Abiotic Stresses. In: RAO, N.; SHIVASHANKARA, K.; LAXMAN, R. (eds). Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi. 2016. 3–17p. https://doi.org/10.1007/978-81-322-2725-0_1
SARMA, H.H.; BORAH, S.K.; CHINTEY, R.; NATH, H.; TALUKDAR, N. Site specific nutrient management (SSNM): Principles, key features and its potential role in soil, crop ecosystem and climate resilience farming. Journal of Advances in Biology and Biotechnology, v.27, n.8, p.211-222, 2024. https://doi.org/10.9734/jabb/2024/v27i81133
SOLANKEY, S.S.; KUMARI, M.; AKHTAR, S.; SINGH, H.K.; RAY, P.K. Challenges and Opportunities in Vegetable Production in Changing Climate: Mitigation and Adaptation Strategies. In: SOLANKEY, S.S.; KUMARI, M.; KUMAR, M. (eds). Advances in Research on Vegetable Production Under a Changing Climate. Vol. 1. Advances in Olericulture. Springer, Cham. 2021. 13–59p. https://doi.org/10.1007/978-3-030-63497-1_2
YANG, Y.; MU, J.; HAO, X.; YANG, K.; CAO, Z.; FENG, J.; LI, R.; ZHANG, N.; ZHOU, G.; KONG, Y. Identification and Analysis of the Mechanism of Stem Mechanical Strength Enhancement for Maize Inbred Lines QY1. International Journal of Molecular Sciences, v.25, n.15, p.8195, 2024. https://doi.org/10.3390/ijms25158195
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Tajudeen Akinrinola, Benjamin Ojochegbe Idakwoji, Moriam Iyabode Oloyede

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY NC ND 4.0)
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
A obra Revista de Ciências Agroambientais (ISSN 1677-6062) está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial-SemDerivações 4.0 Internacional.
