Lipolytic potential of seeds of Bactris gasipaes Kunth

Authors

  • Diogo Melo Batista State University of Pará
  • Everton Vanzeler Pastana State University of Pará
  • Isabela Ewelyn Barra Viana State University of Pará
  • Jakeline dos Santos State University of Pará
  • Ketharine Caroline Borges Assunção State University of Pará
  • João da Silva Carneiro State University of Pará

DOI:

https://doi.org/10.30681/rcaa.v23i2.13807

Keywords:

enzymatic activity, physicochemical characterization

Abstract

Lipolytic enzymes of plant origin have been attracting increasing interest due to their potential to replace synthetic catalysts in industrial processes, offering more sustainable and economical alternatives. However, the search for new natural sources of lipases is still limited, especially among native Amazonian species. In this context, Bactris gasipaes Kunth (peach palm) emerges as a promising plant, since its seeds, although generally discarded, have a composition rich in lipids and proteins that can act as a substrate for enzymes of biotechnological interest. Thus, this work aimed to investigate the presence and characterize the physicochemical properties of lipases present in the seeds of B. gasipaes, contributing to expanding knowledge about potential Amazonian plant enzyme sources. The study involved obtaining crude extracts from mature seeds of B. gasipaes collected in the municipality of Cametá (PA). After grinding and extraction in a specific buffer, lipase activity was evaluated by titration of fatty acids released from the hydrolysis of olive oil under different pH (4.0–8.8) and temperature (37–60°C) conditions. Activity was expressed in enzyme units per milliliter (U/mL). The results demonstrated significant lipolytic activity, with performance superior to that reported for other plant lipases. The optimum pH was identified at 4.5, and the optimum temperature at 40°C, reaching 130 U/mL of activity. The enzymes showed partial stability in more alkaline ranges, suggesting the presence of isoenzymes. This adaptation to acidic pH is especially interesting for applications in transesterification processes of waste oils with high acidity, such as in biodiesel production. The observed catalytic efficiency exceeds values found in microbial lipases (5–16 U/mL), indicating biotechnological potential. It is concluded that the seeds of B. gasipaes represent a novel and promising source of plant lipases with high yield and low production cost. Their physicochemical characteristics, combined with the wide availability of the species in the Amazon, reinforce their potential for application in sustainable industrial processes, especially in the energy and food sectors. This study contributes to filling a scientific gap regarding enzymes of Amazonian plant origin, highlighting the importance of exploring regional biological resources in the search for efficient and environmentally compatible biocatalysts.

Downloads

Download data is not yet available.

Author Biographies

  • Diogo Melo Batista, State University of Pará

    Bachelor's degree in Biological Sciences from the State University of Pará. He works as a scientific initiation scholarship holder, where he develops work in the area of ​​Biochemistry, Enzymology and Biotechnology, with an emphasis on the study of lipase enzymes from plant sources. He taught classes on the content of Biology and its aspects at the Popular Preparatory Course for the National Institute of Biology (CIEBT) (2024).

  • Everton Vanzeler Pastana, State University of Pará

    Everton Vanzeler Pastana, 22 years old, born in Cametá-PA, has a degree in Chemistry from the State University of Pará (UEPA). He has research focused on Organic Chemistry, with an emphasis on biomolecules and enzymatic activities, investigating lipases from Amazonian fruits. In the area of ​​Environmental Education, with extension projects that combine sustainable practices and awareness of environmental issues. In addition, in the area of ​​teaching Chemistry through contextualized experimentation and playful strategies. Experience acquired from the PIBIC/CNPQ/UEPA program, Monitoring and PROEXT-UEPA program.

  • Isabela Ewelyn Barra Viana, State University of Pará

    He has a degree in Chemistry from the State University of Pará (2025) and a High School degree from EEEM PROFESSORA OSVALDINA MUNIZ (2018).

  • Jakeline dos Santos, State University of Pará

    Graduated in Chemistry from the State University of Pará - Campus XVIII/Cametá (2025). Presents research focused on Organic Chemistry, with an emphasis on biomolecules and enzymatic activities, investigating lipases from Amazonian fruits. In the area of ​​Environmental Education, with extension projects that combine sustainable practices and awareness of environmental issues. In addition, in the area of ​​​​teaching Chemistry through contextualized experimentation and playful strategies. Experience acquired from the PIBIC/CNPQ/UEPA program, Monitoring and PROEXT-UEPA program.

  • Ketharine Caroline Borges Assunção, State University of Pará

    Graduated in Chemistry from the State University of Pará - Campus XVIII/Cametá. Her research is focused on Organic Chemistry, with emphasis on the study of enzymatic activities present in fruits from the Amazon region. In addition, in the area of ​​Chemistry teaching, she has works on contextualized experimentation and recreational activities.

  • João da Silva Carneiro, State University of Pará

    He holds a degree in Science/Chemistry from the Federal University of Pará (2001), a master's degree in organic chemistry from the Federal University of Pará (2005) and a PhD in Organic Chemistry from the Federal University of Pará (2010). He is currently an adjunct professor IV at the State University of Pará (UEPA), with exclusive dedication. He was the first coordinator of the Full Degree Course in Chemistry at UEPA (2018-2021), ordinance 1837/18. He was a member of the Scientific Committee of UEPA, in the periods 2016-2018 and 2018-2020. He is the leader of the research group entitled: Chemistry, Chemistry Teaching and Environment, created in 2015. He has experience in the area of ​​Chemistry, with an emphasis on Organic Chemistry, working mainly on the following topics: natural products, phytochemistry, chromatography and essential oils, as well as in the study of Biomolecules, with an emphasis on the study of lipase and peroxidase enzymes from plant sources and biotransformation reactions, having a PATENT in this area, registered under number BR1020190139340. He has experience in Teaching Chemistry, with the use of active methodologies, in the following research lines: chemical tests applied to teaching, study of natural resources and products from the Amazon, Interdisciplinary Approaches in the Teaching of Science and Chemistry and environmental education, and also develops work in the area of ​​​​Teacher Training in Chemistry and Supervised Internships.

References

ALMEIDA, N. C.; ROSA, C. M. C.; FIGUEIREDO, R. O.; VALENTE, W. W. R.; SILVA, N. R.; CARNEIRO, J. S. Investigação de fontes vegetais de lipase: uso de extrato bruto de semente de Astrocarym murumuru. In: SIMPÓSIO DE GRADUAÇÃO E PÓS-GRADUAÇÃO DO DAQBI, 4., 2021, Curitiba. Anais. Curitiba: UTFPR, 2021. p.205-206.

ALVES, E.S.; CORRADINI, A.S.; GIORDANO, R.C.; GIORDANO, R.L.C. Otimização da extração da lipase de sementes dormentes de mamona por extração sequencial. In: XXII CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA, 2018, São Paulo. Anais. São Paulo: Blucher, 2018. p. 3270-3273.

ANTUNES, R. S; LOPES, F. M.; BRITO, A. O.; GARCIA, L. F; SOUSA, D. F.; GIL, E. S. Enzimas vegetais: Extração e aplicações biotecnológicas. Infarma-Ciências Farmacêuticas, v. 29, n. 3, p. 181-198, 2017.

CHANDRA, P; ENESPA; SINGH, R.; ARORA, P. K. Microbial Lipases and Their Industrial applications: a Comprehensive Review. Microbial Cell Factories, v. 19, n. 1, p. 42, 2020. Disponível em: https://link.springer.com/article/10.1186/s12934-020-01428-8#citeas. Acesso: 02 out. 2025.

CORADIN, L.; CAMILLO, J.; VIEIRA, I. C. G. (Ed.). Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região Norte. Brasília, DF: MMA, 2022. (Série Biodiversidade; 53). 1452p. Disponível em: <https://www.gov.br/mma/pt-br/assuntos/biodiversidade/manejo-euso-sustentavel/flora>. Acesso em: dia mês abreviado ano (sem virgula)

DAOUD, L.; KAMOUN, J.; ALI, M. B.; JALLOULI, R.; MECHICHI, R. B. T.; GARGOURI, Y.; ALI, Y. B.; ALOULOU, A. Purification and biochemical characterization of a halotolerant Staphylococcus sp. extracellular lipase. International Journal of Biological Macromolecules, v.57, p. 232– 237, 2013.

EASTMOND, P.J. Clonagem e caracterização da lipase ácida de mamona. Journal of Biological Chemistry, v. 279, n. 44, p. 45540-45545, 2004. Disponível em: https://doi.org/10.1074/jbc.m408686200. Acesso: 30 out. 2024.

ISBILIR, S. S.; OZCAN, H. M.; YAGAR, H. Some Biochemical Properties of Lipase from Bay Laurel (Laurus nobilis L.) Seeds. Journal of the American Oil Chemists’ Society, v. 85, n. 3, p. 227–233, 2008.

LIAQUAT, M.; OWUSU APENTEN, R. K.; Synthesis of low molecular weight flavor esters using plant seedling lipases in organic media. Journal of Food Science: Food Chemistry and Toxicology; v. 65, n. 2, p. 295-299, 2000.

MALDONADO, R. R.; PANCIERA, A. L.; MACEDO, G. A.; MAZUTTI, A.; MAUGERI, F.; RODDRIGUES, M. I. Improvement of lipase production from Geotrichum sp. in shaken flasks. Chemical Industry and Chemical Engineering Quartely, v.18, p. 459-464, 2012.

MATEOS, P. S.; NAVAS, M. B.; MORCELLE, S. R.; RUSCITTI, C.; MATKOVIC, S. R.; BRIAND, L. E. Insights in the biocatalyzed hydrolysis, esterification and transesterification of waste cooking oil with a vegetable lipase. Catalysis Today, v. 372, p. 211–219, 2021.

MONTEIRO, V. N.; NASCIMENTO, R. S. Aplicações industriais da biotecnologia enzimática. Revista processos químicos, v. 3, n. 5, p. 9-23, 2009.

MUSSATTO, S. I.; FERNANDES, M.; MILAGRES, A. Enzimas-Poderosa ferramenta na indústria. Ciência Hoje, v. 41, p. 28-33, 2007.

NARVÁEZ, A.; DOMÍNGUEZ, E. ENZYMES | Overview. Encyclopedia of Analytical Science: Second Edition, p. 508–523, 2004.

NAZÁRIO, P.; FERREIRA, S. A. N.; BORGES, E. E. L.; GENOVESE-MARCOMINI, P. R.; MENDONÇA, M. S. Aspectos anatômicos e histoquímicos da semente de pupunha (Bactris gasipaes Kunth). Journal of Seed Science, v. 35, p. 171-178, 2013.

PAPAGORA, C.; ROUKAS, T.; KOTZEKIDOU, P. Optimization of extracellular lipase production by Debaryomyces hansenii isolates from dry-salted olives using response surface methodology. Food and Bioproducts Processing, v.91, n.4, p. 413-420, 2013.

PASTORE, G. M.; COSTA, V. S. R.; KOBLITZ, M. G. B. Purificação parcial e caracterização bioquímica de lipase extracelular produzida por nova linhagem de Rhizopus sp. Food Science and Technology, v. 23, p. 135-140, 2003.

POLIZELLI, P. P. Caracterização bioquímica de lipase extraída de sementes oleaginosas de Pachira aquatica. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, p. 126. 2008.

POLIZELLI, P. P.; FACCHINI, F. D. A.; BONILLA-RODRIGUEZ, G. O. Stability of a Lipase Extracted from Seeds of Pachira aquatica in Commercial Detergents and Application Tests in Poultry Wastewater Pretreatment and Fat Particle Hydrolysis. Enzyme Research, v. 2013, p. 1–6, 2013.

SANTOS, K. C. et al. Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. Industrial crops and products, v. 49, p. 462-470, 2013.

SETUVAL, L. G. Produção de Lipase Utilizando Subprodutos do Coco Babaçu. Trabalho de Conclusão de Curso (Bacharelado em Engenharia de Alimentos) - Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão. Imperatriz. 2016.

SHARMA, R.; CHIST, Y.; BANERJEE, U. C. Production, purification, characterization, and applications of lipases. Biotechnology Advances, v.19, p.627-662, 2001.

SILVA, E. H. S. N.; ORLANDA, J. F. F. Estudo da atividade da enzima polifenoloxidase extraída do fruto maduro de Mauritia flexuosa. In: LVIII Congresso Brasileiro de Química., 2018, São Luís. Anais. Maranhão: São Luís, 2018.

SILVA, F. A.; KOPP, W.; GIORDANO, R. L. C. Extração de lipase de mamona (Ricinus communis L.) em fase aquosa. In: XX CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA, 2015, São Paulo. Anais. São paulo: Blucher, 2014. p. 1754-1761.

SIQUEIRA, L. O. Bioquímica aplicada. 1. ed. Rio Grande do Sul: Passo Fundo, 2020. 193p.

SOARES, C. M. F.; CASTRO, H. F.; MORAES, F. F.; ZANIN, G. M. Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Applied Biochemistry and Biotechnology. 79, p. 745–757, 1999.

SOUZA, P. G. S.; PANTOJA, L.; SANTOS, A. S.; MARINHO, H. A.; SILVA, J. B. A. S. Avaliação físico-química da farinha de pupunha (Bactris gasipaes Kunth) para uso alimentício. Brazilian Journal of Science, v. 1(2), p. 65-74, 2022. Disponível em: https://www.researchgate.net/publication/358620349_Avaliacao_fisico-quimica_da_farinha_de_pupunha_Bactris_gasipaes_Kunth_para_uso_alimenticio. Acesso: 04 out. 2025.

VESCOVI, V. Extração, purificação e imobilização de lipases vegetais destinadas à síntese de biodiesel e ésteres. São Carlos: Universidade Federal de São Carlos, 2012. 93p. Tese (Mestrado em Ciências Exatas e da Terra), Universidade Federal de São Carlos, 2012.

Published

2025-12-16

Issue

Section

Ciências Biológicas

How to Cite

Melo Batista, D., Vanzeler Pastana, E., Barra Viana, I. E. ., dos Santos, J., Borges Assunção, K. C. ., & da Silva Carneiro, J. . (2025). Lipolytic potential of seeds of Bactris gasipaes Kunth. Revista De Ciências Agro-Ambientais, 23(2), 55-63. https://doi.org/10.30681/rcaa.v23i2.13807