Endophytic fungi of Euterpe edulis (açaí-do-sul) fruits: antimicrobial activity and its relation with the growing medium

Autores/as

  • Vivien Patrícia Garbin
  • Cristiane Vieira Helm
  • Patrícia do Rocio Dalzoto
  • Andressa Katiski da Costa Stuart
  • Bruno Accioly Alves Romagnoli
  • Thiago de Farias Pires
  • Ida Chapaval Pimentel Universidade Federal do Paraná

DOI:

https://doi.org/10.5327/rcaa.v17i1.2844

Palabras clave:

Endophytes, biocontrol, Trichoderma sp., Penicillium sp..

Resumen

Euterpe edulis (açaí-do-sul) have wide nutritional, pharmaceutical and industrial applications. Its extensive exploitation threatens this species with extinction. The endophytic fungi can produce similar compounds to their hosts. Thus, the present study is aimed to isolate endophytic fungi from the fruits of E. edulis and to evaluate their antimicrobial activities against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, MRSA, and Candida albicans and the interference of the culture medium. Fungi were isolated in potato dextrose agar (PDA) medium. The isolates were characterized by morphology. The main genera isolated were Fusarium, Alternaria, Penicillium, Trichoderma, Acremonium and Aspergillus. The isolate Penicillium EFP1 shows antimicrobial activity against all the pathogens tested in PDA plus extract (PDAA). When in Sabouraud plus extract (SDAA), Penicillium EFP1 was able to inhibit all pathogens, except for P. aeroginosa. Trichoderma EFT. On the other hand, it only inhibited E. coli, S. aureus and MRSA, and the addition of the extract decreased the inhibition efficiency. The isolate Penicillium EFP1 presented significant inhibitory activity against pathogens, evidencing the potential for research papers in view of industrial interest and metabolites exploitation.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

ABRAHÃO, M.R.E.; MOLINA, G., PASTORE, G.M. Endophytes: Recent developments in biotechnology and the

potential for flavor production. Food Research International, v.52, n.1, p.367-372, 2013. http://doi.org/10.1016/j.

foodres.2013.03.007

ALY, A.H.; DEBBAB, A.; PROKSCH, P. Fungal endophytes: unique plant inhabitants with great promises. Applied

Microbiology and Biotechnology, v.90, p.1829-1845, 2011. http://doi.org/10.1007/s00253-011-3270-y

ARAÚJO, W.L.; LIMA, A.O.S.; AZEVEDO, J.L.; MARCON, J.; SOBRAL, J.K.; LACAVA, P.T. Manual: isolamento de

microrganismos endofiticos. Piracicaba: CALQ, 2002. 86 p.

ARNOLD, A.E.; MAYNARD, Z.; GILBERT, G.S. Fungal endophytes in dicotyledonous neotropical trees: patterns

of abundance and diversity. Mycological Research, v.105, n.12, p.1502-1507, 2001. http://doi.org/10.1017/

S0953756201004956

BACKMAN, P.A.; SIKORA, R.A. Endophytes: An emerging tool for biological control. Biological Control, v.46, n.1,

p.1-3, 2008. http://doi.org/10.1016/j.biocontrol.2008.03.009

BARBOSA, P.P.M.; SPERANZA, P.; OHARA, A.; SILVA, É.B.; ANGELIS, D.A.; MACEDO, G.A. Biocatalysis and

agricultural biotechnology fungi from Brazilian Savannah and Atlantic rainforest show high antibacterial

and antifungal activity. Biocatalysis Agricultural Biotechnology, v.10, p.1-8, 2017. http://doi.org/10.1016/j.

bcab.2017.01.011

BENCHIMOL, M.; TALORA, D.C.; MARIANO-NETO, E.; OLIVEIRA, T.L.S.; LEAL, A.; MIELKE, M.S.; FARIA, D.

Losing our palms: The influence of landscape-scale deforestation on Arecaceae diversity in the Atlantic forest.

Forest Ecology and Management, v.384, p.314-322, 2017. http://doi.org/10.1016/j.foreco.2016.11.014

BICUDO, M.O.P.; RIBANI, R.H.; BETA, T. Anthocyanins, phenolic acids and antioxidant properties of Juçara fruits

(Euterpe edulis M.) along the on-tree ripening process. Plant Foods for Human Nutrition, v.69, p.142-147,

http://doi.org/10.1007/s11130-014-0406-0

BONFIM, J.A.; VASCONCELLOS, R.L.F.; BALDESIN, L.F.; SIEBER, T.N.; CARDOSO, E.J.B.N. Dark septate

endophytic fungi of native plants along an altitudinal gradient in the Brazilian Atlantic forest. Fungal Ecology,

v.20, p.202-210, 2016. http://doi.org/10.1016/j.funeco.2016.01.008

BORGES, G.D.S.C.; VIEIRA, F.G.K.; COPETTI, C.; GONZAGA, L.V.; ZAMBIAZI, R.C.; MANCINI FILHO, J.; FETT,

R. Chemical characterization, bioactive compounds, and antioxidant capacity of jussara (Euterpe edulis) fruit

from the Atlantic Forest in southern Brazil. Food Research International, v.44, n.7, p.2128-2133, 2011. http://

doi.org/10.1016/j.foodres.2010.12.006

CALVO, A.M.; WILSON, R.A.; BOK, J.W.; KELLER, N.P. Relationship between secondary metabolism and fungal

development. Microbiology and Molecular Biology Reviews, v.66, n.3, p.447-459, 2002. https://dx.doi.org/10.

%2FMMBR.66.3.447-459.2002

CASTRO, C.C.; GUTIÉRREZ, A.H.; SOTÃO, H.M.P. Fungos conidiais em Euterpe oleracea Mart. (açaizeiro) na Ilha

do Combu, Pará-Brasil. Acta Botanica Brasilica, v.26, n.4, p.761-771, 2012. http://doi.org/10.1590/S0102-

CLINICAL AND LABORATORY STANDARDS INSTITUTE (CLSI). Padronização dos testes de Sensibilidade

a Antimicrobianos por Disco-difusão: Norma Aprovada. 8. ed. CLSI, 2003. v. 23, n. 1. Available from:

<http://anvisa.gov.br/servicosaude/manuais/clsi/clsi_OPASM2-A8.pdf>. Accessed on: Mar. 3, 2020.

CUNHA JUNIOR, L.C.C.; NARDINI, V.; KHATIWADA, B.P.; TEIXEIRA, G.H.A.; WALSH, K.B. Classification of intact

açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart) fruits based on dry matter content by means of

near infrared spectroscopy. Food Control, v.50, p.630-636, 2015. http://doi.org/10.1016/j.foodcont.2014.09.046

DE HOOG, G.S.; GUARRO, J.; GENÉ, J.; FIGUERAS, M.J. Atlas of Clinical Fungi. 2. ed. Utrecht: Centraalbureau

voor Schimmelcultures / Universitat Rovira i Virgili / Reus, 2000.

DEEPIKA, V.B.; MURALI, T.S.; SATYAMOORTHY, K. Modulation of genetic clusters for synthesis of bioactive

molecules in fungal endophytes: A review. Microbiological Research, v.182, p.125-140, 2016. http://doi.

org/10.1016/j.micres.2015.10.009

DEUSCHLE, R.A.N.; CAMARGO, T.; ALVES, S.H.; MALLMANN, C.A.; HEIZMANN, B.M. Fracionamento do

extrato diclorometânico de Senecio desiderabilis Vellozo e avaliação da atividade antimicrobiana. Brazilian

Journal of Pharmacognozy, v.17, n.2, p.220-223, 2007. http://doi.org/10.1590/S0102-695X2007000200015

FREITAS, M.A.B.; VIEIRA, I.C.G.; ALBERNAZ, A.L.K.M.; MAGALHÃES, J.L.L.; LEES, A.C. Floristic impoverishment

of Amazonian floodplain forests managed for açaí fruit production. Forest Ecology and Management, v.351,

p.20-27, 2015. http://doi.org/10.1016/j.foreco.2015.05.008

GRANDI, R.A.P. Hifomicetos decompositores do folhedo de Euterpe edulis. Mart. Hoehnea, v.26, n.1, p.87-101, 1999.

GUL, H.T.; SAEED, S.; KHAN, F.A.Z. Entomopathogenic fungi as effective insect pest management tactic: A Review.

Applied Science and Business Economics, v.1, n.1, p.10-18, 2014.

HIGGINBOTHAM, S.J.; ARNOLD, A.E.; IBAÑEZ, A.; SPADAFORA, C.; COLEY, P.D.; KURSAR, T.A. Bioactivity of

fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants.

PLoS One, v.8, n.9, 2013. http://doi.org/10.1371/journal.pone.0073192

HOLLANDER, M.A.; WOLFE, D.; CHICKEN, E. The one-sample location problem. In: HOLLANDER, M.A.;

WOLFE, D.; CHICKEN, E. (orgs.). Nonparametric Statistical Methods. 3. ed. Hoboken: John Wiley & Sons,

http://doi.org/10.1002/9781119196037.ch3

KAWAGUCHI, A.; KOCH, G.G. Sanon: An R Package for Stratified Analysis with Nonparametric Covariable

Adjustment. Journal of Statistical Software, v.67, n.9, p.1-47, 2015. http://doi.org/10.18637/jss.v067.i09

KEMPF, K.; SCHMITT, F.; BILITEWSKI, U.; SCHOBERT, R. Synthesis, stereochemical assignment, and bioactivity

of the Penicillium metabolites penicillenols B1 and B2. Tetrahedron, v.71, n.31, p.5064-5068, 2015. http://doi.

org/10.1016/j.tet.2015.05.116

KERN, M.E.; BLEVINS, K.S. Micologia médica. São Paulo: Premier, 1999.

KOEGEL, S.; BRULÉ, D.; WIEMKEN, A.; BOLLER, T.; COURTY, P.E. The effect of different nitrogen sources on the

symbiotic interaction between Sorghum bicolor and Glomus intraradices: Expression of plant and fungal genes

involved in nitrogen assimilation. Soil Biology Biochemistry, v.86, p.159-163, 2015. http://doi.org/10.1016/j.

soilbio.2015.03.003

LIMA, C.P.; CUNICO, M.M.; MIYASAKI, C.M.S.; MIGUEL, O.G.; CÔCCO, L.C.; YAMAMOTO, C.I.; MIGUEL, M.D.

Conteúdo polifenólico e atividade antioxidante dos frutos da palmeira Juçara (Euterpe edulis Martius). Revista

Brasileira de Plantas Medicinais, v.14, n.2, p.321-326, 2012. http://doi.org/10.1590/S1516-05722012000200011

LUDWIG-MÜLLER, J. Plants and endophytes: equal partners in secondary metabolite production? Biotechnology

Letters, v.37, p.1325-1334, 2015. http://doi.org/10.1007/s10529-015-1814-4

MEDINA, J.M.; MOREIRA, S.L.S.; ALVES, R.C.; MARTINS, M.L.; CAMPOS, A.N.R. Mycorrhizal association in

Euterpe edulis Martius (Palmeira Juçara) in the municipality of Rio Pomba, MG. Vértices, v.14, n.2, p.159-167,

http://doi.org/10.5935/1809-2667.20120050

MUTAWILA, C.; VINALE, F.; HALLEEN, F.; LORITO, M.; MOSTERT, L. Isolation, production and in vitro effects

of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk

diseases. Plant Pathology, v.65, n.1, p.104-113, 2016. http://doi.org/10.1111/ppa.12385

NIELSEN, J.C.; NIELSEN, J. Development of fungal cell factories for the production of secondary metabolites:

linking genomics and metabolism. Synthetic and Systems Biotechnology, v.2, n.1, p.5-12, 2017. http://doi.

org/10.1016/j.synbio.2017.02.002

OSTROSKY, E.A.; MIZUMOTO, M.K.; LIMA, M.E.L.; KANEKO, T.M.; NISHIKAWA, S.O.; FREITAS, B.R. Métodos para

avaliação da atividade antimicrobiana e determinação da concentração mínima inibitória (CMI) de plantas medicinais.

Revista Brasileira de Farmácia, v.18, n.2, p.301-307, 2008. https://doi.org/10.1590/S0102-695X2008000200026

PAREDES-LOPEZ, O.; CERVANTES-CEJA, M.L.; VIGNA-PÉREZ, M.; HERNÁNDEZ-PÉREZ, T. Berries: improving

human health and healthy aging, and promoting quality life — a review. Plant Foods for Human Nutrition,

v.65, p.299-308, 2010. http://doi.org/10.1007/s11130-010-0177-1

POLTRONIERI, T.P.S.; AZEVEDO, L.A.S.; VERZIGNASSI, J.R.; SILVA, D.E.M. Colletotrichum gloeosporioides em

frutos de juçara (Euterpe edulis) na Mata Atlântica, em Paraty-RJ e Ubatuba-SP. Summa Phytopathologica,

v.40, n.1, p.88-89, 2014. http://doi.org/10.1590/S0100-54052014000100015

POULOSE, S.M.; FISHER, D.R.; LARSON, J.; BIELINSKI, D.F.; RIMANDO, A.M.; CAREY, A.N.; SCHAUSS, A.G.;

SHUKITT-HALE, B. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory

stress signaling in mouse brain BV-2 microglial cells. Journal of Agricultural and Food Chemistry, v.60, n.4,

p.1084-1093, 2012. http://doi.org/10.1021/jf203989k

R CORE TEAM. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical

Computing, 2014. Available at: <http://www.R-project.org/>. Accessed on: Apr. 1, 2018.

RADHAKRISHNAN, R.; LEE, I. Penicillium – sesame interactions: A remedy for mitigating high salinity stress effects

on primary and defense metabolites in plants. Environmental and Experimental Botany, v.116, p.47-60, 2015.

http://doi.org/10.1016/j.envexpbot.2015.03.008

RODRIGUES, K.F. The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycology, v.86, n.3, p.376-

, 1994. http://doi.org/10.2307/3760568

STROBEL, G.; DAISY, B. Bioprospecting for microbial endophytes and their natural products. Microbiology and

Molecular Biology, v.67, n.4, p.491-502, 2003. https://dx.doi.org/10.1128%2FMMBR.67.4.491-502.2003

SURYANARAYANAN, T.S.; THIRUNAVUKKARASU, N.; GOVINDARAJULU, M.B.; SASSE, F.; JANSEN, R.;

MURALI, T.S. Fungal endophytes and bioprospecting. Fungal Biology Reviews, v.23, n.1-2, p.9-19, 2009.

http://doi.org/10.1016/j.fbr.2009.07.001

XU, L.; HAN, T.; WU, J.; ZHANG, Q.; ZHANG, H.; HUANG, B.-K.; RAHMAN, K.; QIN, L.-P. Comparative research of

chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic

fungus. Phytomedicine, v.16, n.6-7, p.609-616, 2009. http://doi.org/10.1016/j.phymed.2009.03.014

YANTO, D.H.Y.; HIDAYAT, A.; TACHIBANA, S. Periodical biostimulation with nutrient addition and

bioaugmentation using mixed fungal cultures to maintain enzymatic oxidation during extended bioremediation

of oily soil microcosms. International Biodeterioration and Biodegradation, v.116, p.112-123, 2017. http://

doi.org/10.1016/j.ibiod.2016.10.023

YU, H.; ZHANG, L.; LI, L.; ZHENG, C.; GUO, L.; LI, W.; SUN, P.; QIN, L. Recent developments and future prospects

of antimicrobial metabolites produced by endophytes. Microbiological Research, v.165, n.6, p.437-449, 2010.

http://doi.org/10.1016/j.micres.2009.11.009

Publicado

2020-05-27

Número

Sección

Ciências Biológicas

Cómo citar

Endophytic fungi of Euterpe edulis (açaí-do-sul) fruits: antimicrobial activity and its relation with the growing medium. (2020). Revista De Ciências Agro-Ambientais, 17(1), 14-21. https://doi.org/10.5327/rcaa.v17i1.2844

Artículos similares

1-10 de 40

También puede Iniciar una búsqueda de similitud avanzada para este artículo.