Demographic and socioeconomic factors in impacts of COVID-19 by regions in Brazil/ Factores demográficos y socioeconómicos en impactos del COVID-19 por regiones en Brasil/ Fatores demográficos e socioeconômicos nos impactos da COVID-19 por regiões do Brasil



COVID-19, Demography, Mortality, Brazil


Objective: assess which demographic and socioeconomic factors contribute to the different impacts of COVID-19 by regions in Brazil. Method: descriptive study with  mathematic modeling (USA) were use to assess deaths and COVID-19 cases and also establish a standard relational relationship with demographic and socioeconomic factors across the country and by regions (2020 to 2023). The factors analyzed in the study: i) deaths and cases of COVID-19, ii) total population density per thousand kilometers, iii) isolation index, iv) population, v) Human Development Index - HDI, vi) population density, vii ) average water tariff, viii) urban water service tariff, ix) total water tariff, x) urban sewage service tariff referring to municipalities served with water, xi) service tariff of total sewage, referring to the municipalities served with water, xii) Gini index (income concentration level), xiii) 1st and 2nd dose of vaccine, and xiv) Gross Domestic Product. Results: the study reveals that COVID-19 cases/deaths are significantly correlated with GDP and inversely correlated with the vaccination rate. Conclusion: this study shows scientific evidence that supports the use of vaccination as a protective measure against COVID-19 mortality in Brazil.

Biografia do Autor

Amaury de Souza, Universidade Federal de Mato Grosso do Sul

Graduado em licenciatura em Fisica (UFSCAR), bacharelado em Fisica (USO-Sao Carlos), mestrado em meteorologia (UFV), doutorado em tecnologias ambientais (UFMS) e professor associado na UFMS


Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta bio-medica: Atenei Parmensis. 2020; 91:157-60.

Young BE, Ong SWX, Kalimuddin S, Jenny GL, Seow YT, Jiashen L, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020; 323(15):1488-1494.

Baloch S, Baloch MA, Zheng T, Pei X. The coronavirus disease 2019 (COVID-19) pandemic. Tohoku J Exp Med. 2020; 250(4):271-278.

Tang Y, Wang S. Mathematic modeling of COVID-19 in the United States. Emerg Microbes Infect. 2020; 9(1):827–829.

Ministério da Saúde (BR). Secretaria de Vigilância Epidemiológica, Departamento de Vigilância Epidemiológica. Guia de Vigilância em Saúde. Brasília, DF: Ministério da Saúde; 2021.

Johnson RA, Wichern DW. Applied Multivariate Statistical Analysis. 5. ed. Prentice Hall: Upper Saddle River; 2002.

Bonamente M. Statistics and analysis of scientific data. 2. ed. New York: Springer; 2017.

Dekking FM. A modern introduction to probability and statistics: understanding why and how. New York: Springer; 2005.

Von Sperling M. Introdução à qualidade das águas e ao tratamento de esgotos. 4. ed. Belo Horizonte: UFMG; 2014.

Hozé N, Paireau J, Lapidus N, Kiem CT, Salje H, Severi G, et al. Monitoring the proportion of the population infected by SARS-CoV-2 using age-stratified hospitalisation and serological data: a modelling study. The Lancet. 2021; 6(8):546.

Jewell NP, Lewnard JA. On the use of the reproduction number for SARS-CoV-2: Estimation, misinterpretations and relationships with other ecological measures. J R Stat Soc Series A. 2022; 185(Suppl. 1):S16–S2.7

Gomes MGM, Ferreira MU, Corder RM, King JG, Souto-Maior C, Penha-Gonçalves C, et al. Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold. medRxiv [Preprint]. J Theor Biol. 2022.

Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020; 13; 27(2):taaa021.

Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet. 2020; 395(10225):689-697.

Souza A, Abreu MC, Oliveira-Júnior FJ, Alves FW, Aristone F, Martins SD et al. Generalized models and the impacts of population density on COVID-19 transmission. J Health NPEPS. 2021; 6(2):1-23.

Pilecco FB, Coelho CG, Fernandes QHRF, Silveira IH, Pescarini JM, Ortelan Naiá et al. The effect of laboratory testing on COVID-19 monitoring indicators: an analysis of the 50 countries with the highest number of cases. Epidemiol. Serv. Saúde. 2021;30(2): e2020722

Fauci AS, Lane HC, Redfield RR. Covid-19 — Navigating the Uncharted. N Engl J Med. 2020; 382:1268-1269.

Gupta M, Wahl B, Adhikari B, Bar-Zeev N, Bhandari S, Coria A, et al. The need for COVID-19 research in low- and middle-income countries. Glob Health Res Pol. 2020; 5(33).

Patwary MM, Alam MA, Bardhan M, Disha AS, Haque MZ, Billah SM, et al. COVID-19 vaccine acceptance among low- and lower-middle-income countries: a rapid systematic review and meta-analysis. Vaccines. 2022;10(3):427.

Bates BR, Villegas-Botero A, Costales JA, Moncayo AL, Tami A, Carvajal A, Grijalva Mal. COVID-19 vaccine hesitancy in three latin american countries: reasons given for not becoming vaccinated in Colombia, Ecuador, and Venezuela. Health Community. 2022; 37(12):1465–1475.

Urrunaga-Pastor D, Bendezu-Quispe G, Herrera-Añazco P, Uyen-Cateriano A, Toro-Huamanchumo CJ, Rodriguez-Morales AJ, et al. Cross-sectional analysis of COVID-19 vaccine intention, perceptions and hesitancy across Latin America and the Caribbean. Trav Med Infect dis. 2021; 41:102059.

Wang Q, Yang L, Jin H, Lin L. Vaccination against COVID-19: a systematic review and meta-analysis of acceptability and its predictors. Prev Med. 2021;150:106694.

Liu R, Zhang Y, Nicholas S, Leng A, Maitland E, Wang J. COVID-19 vaccination willingness among chinese adults under the free vaccination policy. Vaccines. 2021; 9(3):292.

Nascimento VF, Piber RS, Britis RF, Riegel F, Unicovsky MAR, Terças-Trettel ACP, et al. Opiniões de idosos acerca da vacina anticovid e sua possível recusa. Pers Bioet. 2023; 27(1):e2714.

Taschner NP. Vaccine hesitancy: old story, same mistakes. J Health NPEPS. 2021; 6(2):e5876.




Como Citar

Souza, A. de, Martins de Souza, D., Carvalho Abreu, M., Francisco de Oliveira-Júnior J., Barros da Silva, E., Pobocikova, I., & Soares Casaes Nunes, R. (2023). Demographic and socioeconomic factors in impacts of COVID-19 by regions in Brazil/ Factores demográficos y socioeconómicos en impactos del COVID-19 por regiones en Brasil/ Fatores demográficos e socioeconômicos nos impactos da COVID-19 por regiões do Brasil. Journal Health NPEPS, 8(1). Recuperado de



Artigo Original/ Original Article/ Artículo Originale