Modelos para previsão das taxas de incidência e mortalidade do câncer do colo do útero/ Models for predicting cervical cancer incidence and mortality rates/ Modelos para predecir las tasas de incidencia y mortalidad del cáncer del cuello uterino

Autores

Palavras-chave:

Fatores do Tempo, Neoplasias do Colo do Útero, Incidência, Mortalidade, Epidemiologia

Resumo

Objetivo: analisar e prever as taxas de incidência e mortalidade do câncer do colo do útero, utilizando modelos de séries temporais. Método: estudo ecológico de uma série histórica, realizado na Grande Cuiabá. Os dados de incidência foram referentes ao registro de câncer de base populacional (2000 a 2012) e os de mortalidade (1981 a 2018), obtidos no Sistema de Informação sobre Mortalidade. Os dados foram analisados pelos modelos Arima e Holt. Resultados: na série da taxa de incidência do carcinoma in situ, o modelo adequado foi AR (1), cujas projeções estimadas (2013-2014) flutuaram entre 15,54 e 16,45 por 100 mil mulheres. Na série da taxa do colo do útero invasor (modelo Holt), as previsões (2013-2014) foram entre 11,28 a 8,9 por 100 mil mulheres. Na taxa de mortalidade, o modelo satisfatório foi ARMA (1,1), cujas previsões (2019-2020) flutuaram entre 9,46 e 9,62 por 100 mil mulheres. Conclusão: nos três casos, as taxas previstas apresentaram níveis próximos dos observados, indicando que os modelos permitiram estimar e prever, de maneira adequada. Também foi possível observar um discreto aumento no câncer in situ e um declínio na incidência do câncer invasor. Na mortalidade evidenciou uma estabilidade nos resultados e nas previsões.

Referências

Claro IB, Lima LD, Almeida PF. Diretrizes, estratégias de prevenção e rastreamento do câncer do colo do útero: as expectativas do brasil e do Chile. Ciênc Saúde Coletiva. 2021; 26(10):4497-4509.

Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre LA, Jemal A. Global câncer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68:394-424.

Ministério da Saúde (BR). Instituto Nacional do Câncer José Alencar Gomes da Silva. Estimativa | 2020. Incidência de câncer no Brasil. - Rio de Janeiro: INCA; 2019. [acesso em 2022 dez. 10]. Disponível em: https://www.inca.gov.br/sites/ufu.sti.inca.local/files/media/document/estimativa-2020-incidencia-de-cancer-no-brasil.pdf.

Nakagawa JT, Espinosa MM, Barbieri M, Schirmer J. Carcinoma do colo do útero: taxa de sobrevida e fatores prognósticos em mulheres no Estado de Mato Grosso. Acta Paul Enferm. 2011; 24(5):631-637.

Stanley M. HPV – imune response to infection and vaccination. Infect Agents Cancer. 2010; 5(19).

Ministério da Saúde (BR). Instituto Nacional do Câncer José Alencar Gomes da Silva. Controle do câncer do colo do útero: conceito e magnitude. Rio de Janeiro: INCA; 2020.

Ministério da Saúde (BR). Instituto Nacional de Câncer José Alencar Gomes da Silva. Diretrizes brasileiras para o rastreamento do câncer do colo do útero. Rio de Janeiro: INCA; 2016.

Fundação Oswaldo Cruz. Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira. Portal de Boas Práticas em Saúde da Mulher, da Criança e do Adolescente. Postagens: Rastreamento do Câncer do Colo do útero: cobertura, periodicidade e população-alvo. Rio de Janeiro; 2018. [acesso em 2022 dez 11] Disponível em: https://portaldeboaspraticas.iff.fiocruz.br/atencao-mulher/rastreamento-do-cancer-do-colo-do-utero-cobertura-periodicidade-e-populacao-alvo/.

Ministério da Saúde (BR). Instituto Nacional de Câncer José Alencar Gomes da Silva. Ações de controle: prevenção do câncer do colo do útero. Rio de Janeiro: INCA; 2020.

Duavy LM, Batista FLR, Jorge MSB, Santos JBF. A percepção da mulher sobre o exame preventivo do câncer cérvico-uterino: estudo de caso. Ciênc Saúde Coletiva. 2007; 12(3):733-742.

Casarin MR, Piccoli JCE. Educação em saúde para prevenção do câncer de colo do útero em mulheres do município de Santo Ângelo/RS. Ciênc Saúde Coletiva. 2021; 16(9):3925-3932.

World Health Organization (WHO). International statistical classification of diseases and related helth problems 10th Revision; 2019.

Ministério da Saúde (BR). Instituto Nacional de Câncer José Alencar Gomes da Silva. Registros de Câncer de Base Populacional. Tabulador das informações dos RCBP. Rio de Janeiro: INCA; 2020.

Ministério da Saúde (BR). Instituto Nacional do Câncer José Alencar Gomes da Silva. Atlas on-line de mortalidade por câncer. Rio de Janeiro: INCA; 2020.

Rede Interagencial de Informações para a Saúde. Indicadores básicos para a saúde no Brasil: conceitos e aplicações. 2ª ed. Brasília: RIPSA; 2008.

Morettin PA, Toloi CMC. Análise de séries temporais. Ed Edgard Blucher Ltda. 3ª Ed. São Paulo; 2018.

Alves CC, Hoepers E, Corazza EJ, et al. Aplicação de métodos estatísticos com suavização exponencial dupla e tripla para previsão de demanda na gestão de estoques. Rev Prod Online. 2019; 19(3):1001-1026.

López AR. Análise de intervenção de uma ação do programa de rastreamento do câncer de mama nas séries de mortalidade no Brasil e regiões [tese]. Rio de Janeiro: UFRJ/COPPE/Programa de Engenharia Biomédica; 2018.

Mi Domenech. Identificação de um modelo ARIMA (p,d,q). Maringá; 2019 [acesso em 2020 dez. 10]. Disponível em: https://www.midomenech.com.br/identificacao-de-um-modelo-arimapdq/.

Coelho Júnior LM, Melquíades TF, Martins KLC, Santos Júnior EP, Freitas GP. Previsão do consumo de eletricidade no nordeste brasileiro. Rev Engevista. 2018; 20(3):408-423.

Cai T, Li X. Forecasting methods to reduce inventory level in supply chain. J Appl Math Phys. 2022; 10(2):301-310.

Morais AC, Soares TS, Cruz ES. Height, volume and form factor equations for tectona grandis l. f. in Alta Floresta (MT). Sci Agrar Parana. 2020; 19(1):27-37.

Holanda Filho JD. Métodos quantitativos de previsão de vendas: estudo de caso em uma indústria cearense de alimentos. [monografia]. Fortaleza Universidade Federal do Ceará, Curso de Graduação em Administração; 2018. 74 p.

R Core Team. R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria; 2022 [acesso em 2022 out. 12]. Disponível em: https://www.R-project.org/.

Ministério da Saúde (BR). Conselho Nacional de Saúde. Resolução nº. 466, de 12 de dezembro de 2012. Aprova diretrizes e normas regulamentadoras de pesquisas envolvendo seres humanos. Brasília: Diário Oficial da União; 2012.

Ministério da Saúde (BR). Instituto Nacional do Câncer José Alencar Gomes da Silva. Controle do Câncer do Colo do Útero: Histórico das ações. Rio de Janeiro: INCA; 2020.

Ayres ARG, Silva GA, Guimarães RM. Tendência da incidência de câncer do colo do útero invasor em quatro capitais brasileiras: dados dos registros de câncer de base populacional, 1990-2004. Cad Saúde colet. 2013; 21(3):289-95.

Silva VM, Vasconcelos KP, Diniz DDS, Farias GM, Oliveira AEA. Fatores que influenciam a não adesão da mulher ao exame Papanicolau: revisão de literatura. Rev Inter Saúde, 2021; 8(único):326-340.

Ministério da Saúde (BR). Instituto Nacional de Câncer. Plano de ação para redução da incidência e mortalidade por câncer do colo do útero. Rio de Janeiro; 2010. [acesso em 2020 dez. 10]. Disponível em: bvsms.saude.gov.br/bvs/publicacoes/plano_acao_reducao_cancer_colo.pdf.

Liu Q, Liu X, Jiang B, Yang W. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect Dis. 2011; 11(218).

Ministério da Saúde (BR). Instituto Nacional de Câncer. Controle do Câncer do Colo do Útero: Histórico das ações. – Rio de Janeiro: INCA; 2020.

Ministério da Saúde (BR). Instituto Nacional do Câncer José Alencar Gomes da Silva. Estimativa | 2018 incidência de câncer no Brasil. Coordenação de Prevenção e Vigilância. - Rio de Janeiro: INCA; 2017.

Ministério da Saúde (BR). Instituto Nacional do Câncer. Dados e números sobre câncer do colo do útero. Relatório anual 2022. – Rio de Janeiro: INCA; 2022. [acesso em 2022 dez. 14]. Disponível em: https://www.inca.gov.br/publicacoes/relatorios/dados-e-numeros-sobre-cancer-do-colo-do-utero-relatorio-anual-2022.

Anokye R, Acheampong E, Owusu I, et al. Tie series analysis of malária in Kumasi: using ARIMA models to forecast future incidence. Cogent Soc Sciences. 2018; 4(1):1461544.

Tian CW, Wang H, Luo XM. Time-series modelling and forecasting of hand, foot and mouth disease cases in China from 2008 to 2018. Epidemiol Infect. 2019; 147:e82.

Adedia D, Nanga S, Appiah SK, Lotsi A, Abaye DA. Box-Jenkins methodology in predicting maternal mortality records from a public health facility in Gana. Open J Appl Sciences. 2018; 8(6):189-202.

Promprou S, Jaroensutasinee M, Jaroensutasinee K. Forecasting dengue haemorrhagic fever cases in southern Thailand using ARIMA models. Dengue Bulletin. 2006; 30:99-106.

Montgomery DC, Jennings CL, Kulahci M. Introduction to time series analisys and forecasting. 2nd Edition. Wiley: Hoboken; 2015.

Downloads

Publicado

2022-12-01

Edição

Seção

Artigo Original/ Original Article/ Artículo Originale

Como Citar

Modelos para previsão das taxas de incidência e mortalidade do câncer do colo do útero/ Models for predicting cervical cancer incidence and mortality rates/ Modelos para predecir las tasas de incidencia y mortalidad del cáncer del cuello uterino. (2022). Journal Health NPEPS, 7(2). https://periodicos.unemat.br/index.php/jhnpeps/article/view/10446

Artigos Semelhantes

11-20 de 150

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)